-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattacks_alternative.py
117 lines (86 loc) · 3.9 KB
/
attacks_alternative.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
"""
Author: Can Bakiskan
Date: 2019-06-07
Attacks model with specified attack method,
you can also attack blackbox using another model.
"""
from tqdm import tqdm
import torch
from torch import nn
def FastGradientSignMethod(model, x, y_true, epsilon, data_params):
x.requires_grad = True
y_hat = model(x)
# keep track so we don't attack whats already wrong
originally_right_indices = torch.argmax(y_hat, dim=1) == y_true
# reduction none prohibits taking avg so we can take derivative of each image's loss independently
criterion = nn.CrossEntropyLoss(reduction="none")
loss = criterion(y_hat, y_true)
if loss.min() <= 0:
y_true_onehot = torch.zeros_like(y_hat)
y_true_onehot[torch.arange(y_hat.shape[0]), y_true] = 1.0
loss[loss == 0.0] = nn.functional.mse_loss(
y_hat[loss == 0.0], y_true_onehot[loss == 0.0], reduction="none"
).mean(dim=1)
# raise GradientMaskingError("Gradient masking is happening")
# gradient parameter specifies "vector" in jacobian vector product
# it must be there so we can take gradient of multi variables (loss)
loss.backward(
gradient=torch.ones_like(y_true, dtype=torch.float), retain_graph=True
)
grad_wrt_img = x.grad.data
# Collect the element-wise sign of the data gradient
sign_data_grad = grad_wrt_img.sign()
perturbation = epsilon * sign_data_grad
# mask the correctly labelled images
# .view because pytorch requires number of dimensions to be the same
# note that size of first dimension the same
perturbation = originally_right_indices.view(-1, 1, 1, 1).float() * perturbation
perturbation.data = torch.max(
torch.min(perturbation, data_params["x_max"] - x), data_params["x_min"] - x,
)
# this returns perturbation, clamping to [0,1] done outside
return perturbation
def ProjectedGradientDescent(
model, images, y_true, show_bar, data_params, attack_params
):
epsilon = attack_params["eps"]
step_size = attack_params["step_size"]
num_steps = attack_params["num_steps"]
num_restarts = attack_params["num_restarts"]
normalized_min = data_params["x_min"]
normalized_max = data_params["x_max"]
# keeps track across restarts
max_dmg_perturbation = torch.zeros_like(images)
originally_right_indices = torch.argmax(model(images), dim=1) == y_true
# reduction none prohibits taking avg so we can take derivative of each image's loss independently
criterion = nn.CrossEntropyLoss(reduction="none")
# we want to never go below the original loss for each image, so start with original as max
max_loss = criterion(model(images), y_true)
for i in tqdm(range(num_restarts)):
# random restart
adv = 2 * epsilon * torch.rand_like(images) - epsilon * torch.ones_like(images)
# turns off random restart
# adv = torch.zeros_like(images)
for i in tqdm(range(num_steps)):
adv += FastGradientSignMethod(
model,
torch.clamp(images + adv, normalized_min, normalized_max),
y_true,
step_size,
data_params,
)
adv = torch.clamp(adv, -epsilon, epsilon)
output = model(torch.clamp(images + adv, normalized_min, normalized_max))
loss = criterion(output, y_true)
# if current loss is higher, restart successful
update_indices = torch.le(max_loss, loss)
# mask update indices
update_indices = update_indices * originally_right_indices
max_loss[update_indices] = loss[update_indices].data
max_dmg_perturbation[update_indices] = adv[update_indices].data
del loss
del adv
del output
del update_indices
torch.cuda.empty_cache()
return max_dmg_perturbation