-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdescriptive.py
251 lines (192 loc) · 8.57 KB
/
descriptive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# %%
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import ttest_ind
from scipy.stats import mannwhitneyu
from scipy.stats import entropy
from datasets import load_dataset
# %%
# load our metadata
ds = load_dataset("chcaa/memo-canonical-novels")
# make df
df = pd.DataFrame(ds['train'])
df.head()
df.columns
# %%
# let's try a distribution plot of the groups (CATEGORY) and prices
use_cats = ['O', 'HISTORICAL', 'CANON']
if len(use_cats) == 3:
nice_labels = {'O': 'Other', 'HISTORICAL': 'Historical', 'CANON': 'Canon'}
# Combine categories in the 'CATEGORY' column
df['CATEGORY'] = df['CATEGORY'].replace({
'LEX_CANON': 'CANON',
'CANON_HISTORICAL': 'CANON',
'CE_CANON': 'CANON'
})
group_labels = ['Other', 'Historical', 'Canon']
if len(df['CATEGORY'].unique()) == 3:
print('--- using only 3 categories ---')
print('Unique categories:', df['CATEGORY'].unique())
print('\n')
if len(use_cats) == 5:
nice_labels = {
'O': 'Other',
'HISTORICAL': 'Historical',
'LEX_CANON': 'Lex Canon',
'CE_CANON': 'CE Canon',
'CANON_HISTORICAL': 'Canon/historical'
}
group_labels = ['O', 'HISTORICAL', 'LEX_CANON', 'CE_CANON', 'CANON_HISTORICAL']
# Testing
measure = 'PRICE'
# Ensure the unique categories align with group_labels
unique_cats = df['CATEGORY'].unique()
group_labels = [nice_labels[cat] for cat in unique_cats]
# Perform comparisons
for i, group in enumerate(unique_cats):
for j, other_group in enumerate(unique_cats):
if i < j:
group_data = df[df['CATEGORY'] == group][measure].dropna()
other_group_data = df[df['CATEGORY'] == other_group][measure].dropna()
# Mann-Whitney U test
t, p = mannwhitneyu(group_data, other_group_data)
print(f"Comparing {group_labels[i].upper()} and {group_labels[j].upper()}:")
print(f"Mann-Whitney U test: U = {t}, p = {p}")
print('..')
# t-test
t, p = ttest_ind(group_data, other_group_data)
print(f"t-test: t = {t}, p = {p}")
print('..')
print('means, stds')
print(f"Mean {group_labels[i]}: {group_data.mean()}, std: {group_data.std()}")
print(f"Mean {group_labels[j]}: {other_group_data.mean()}, std: {other_group_data.std()}")
print('//')
# %%
# make some nice boxplots showing the scatterpoints as well
def different_proxy_types_boxplots(df, col_name, measure, w, h):
# Generate a color palette based on the unique values in the column
unique_categories = df[col_name].unique()
palette = sns.color_palette("tab20", len(unique_categories)) # Use a palette with distinct colors
category_colors = dict(zip(unique_categories, palette)) # Map categories to colors
# Set up the plot
fig, ax = plt.subplots(figsize=(w, h), dpi=300)
sns.set(style="whitegrid", font_scale=1, font='serif')
# add a dotted grey line that shows the data mean
ax.axhline(df[measure].mean(), color='lightgrey', linestyle='dashed', linewidth=1.8)
# Create the boxplot
sns.boxplot(data=df, x=col_name, y=measure, showfliers=False, ax=ax, palette=category_colors, boxprops=dict(alpha=0.35, linewidth=1))
# Plot all individual points, color-coded by category
for category, color in category_colors.items():
category_data = df[df[col_name] == category]
x_positions = np.random.normal(unique_categories.tolist().index(category), 0.13, size=len(category_data))
ax.scatter(x_positions, category_data[measure], alpha=0.25, color=color, label=category, s=45, edgecolor=color)
ax.set_ylabel(measure.lower())
ax.set_xlabel('')
# Avoid duplicate legend entries
handles, labels = ax.get_legend_handles_labels()
by_label = dict(zip(labels, handles))
# Show the plot
plt.tight_layout()
# rotate the x-axis labels
plt.xticks(rotation=60)
plt.xticks(ticks=np.arange(len(unique_categories)), labels=[nice_labels[cat] for cat in unique_categories], fontsize=14)
plt.show()
return fig
# Example usage
measure = 'PRICE'
x = different_proxy_types_boxplots(df, 'CATEGORY', measure, 9, 5)
# %%
# make a distribution plot of the prices
# make some nice colors
unique_categories = df['CATEGORY'].unique()
colors = sns.color_palette('tab20', n_colors=len(unique_categories))
plt.figure(figsize=(10, 3))
for i, group in enumerate([df[df['CATEGORY'] == cat][measure] for cat in unique_cats]):
sns.histplot(group, label=nice_labels[unique_cats[i]], kde=True, stat='density', color=colors[i], alpha=0.2, line_kws={'linewidth': 2})
plt.legend(nice_labels)
plt.xlabel('price')
plt.xlim(0, 9)
# %%
def plot_histograms_two_groups(df, scores_list, group_column='CATEGORY', cutoff=None, logscale=None):
plots_per_row = 3
if len(scores_list) <= plots_per_row:
fig, axes_list = plt.subplots(1, len(scores_list), figsize=(20, 4), dpi=300, sharey=True)
else:
rows = len(scores_list) // plots_per_row
if len(scores_list) % plots_per_row != 0:
rows += 1
fig, axes_list = plt.subplots(rows, plots_per_row, figsize=(20, 4 * rows), dpi=300, sharey=True)
fig.tight_layout(pad=3)
canon = df.loc[df[group_column] == 1]
noncanon = df.loc[df[group_column]== 0]
print('len per group', len(canon), len(noncanon))
labels = [x.replace('_', ' ').lower() for x in scores_list]
for i, score in enumerate(scores_list):
plt.tight_layout()
sns.set(style="whitegrid", font_scale=2, font='serif')
ax = axes_list.flat[i]
sns.histplot(data=noncanon[score], ax=ax, color='#38a3a5')
sns.histplot(data=canon[score], ax=ax, color='lightcoral')
# Set labels
ax.set_xlabel(labels[i])
if i >= 1:
ax.set_ylabel('') # Set the y-axis label to an empty string
if cutoff is not None:
ax.set_ylim(0, cutoff)
if logscale is not None:
ax.set_xscale('log')
plt.show()
return fig
# %%
# make a hetamap of the groups and the publishing houses
# get the unique values for the publishers
publishers = df['PUBLISHER'].unique()
# and drop empty values
publishers = publishers[pd.notnull(publishers)]
# get the unique values for the groups
categories = df['CATEGORY'].unique()
# create a matrix with the counts
matrix = np.zeros((len(publishers), len(categories)))
for i, publisher in enumerate(publishers):
for j, category in enumerate(categories):
matrix[i, j] = len(df[(df['PUBLISHER'] == publisher) & (df['CATEGORY'] == category)])
# make it percentages instead
# Calculate the percentage of each group (category) that comes from a given publisher
matrix_perc = matrix / (matrix.sum(axis=0, keepdims=True) + 1e-10)
# Plot the normalized matrix
plt.figure(figsize=(4, 22))
sns.set_style('white')
sns.heatmap(matrix_perc, annot=True, fmt=".1%", xticklabels=categories, yticklabels=publishers, cbar=False, cmap='Reds', mask=matrix == 0)
plt.title("Percentage of books by publisher per category")
plt.xticks(ticks=np.arange(len(categories)) + 0.5, labels=[nice_labels[cat] for cat in categories], rotation=45)
plt.show()
# %%
# we want to get the entropy of each publisher distribution
# Calculate the entropy of each category's distribution of publishers
# make each a list
for cat in unique_categories:
dist = df[df['CATEGORY'] == cat]['PUBLISHER'].value_counts(normalize=True)
print(f"Entropy of {nice_labels[cat]} distribution: {round(entropy(dist),3)}")
print('// and with sampling //')
# if we take a random sample of the smaller group (so all should have the size of the smallest group)
# we can calculate the entropy of the distribution of publishers
for cat in unique_categories:
data = df[df['CATEGORY'] == cat].sample(len(df[df['CATEGORY'] == 'HISTORICAL']))
dist = data['PUBLISHER'].value_counts(normalize=True)
print(f"Entropy of {nice_labels[cat]} distribution: {round(entropy(dist),3)}")
# %%
# we want to plot the page count per group
# make a boxplot
sns.set(style="whitegrid", font_scale=1.5, font='serif')
different_proxy_types_boxplots(df, 'CATEGORY', 'PAGES', 9, 5)
# and as a distribution plot
colors = sns.color_palette('tab20', n_colors=len(unique_categories))
plt.figure(figsize=(10, 3))
for i, group in enumerate([df[df['CATEGORY'] == cat]['PAGES'] for cat in unique_cats]):
sns.histplot(group, label=nice_labels[unique_cats[i]], kde=True, stat='density', color=colors[i], alpha=0.2, line_kws={'linewidth': 2})
plt.legend(nice_labels)
plt.xlabel('pages')
plt.xlim(0, 1000)
# %%