-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathoperators.cpp
250 lines (208 loc) · 6.05 KB
/
operators.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
* Copyright (c) 2019, Adam Celarek | Research Unit of Computer Graphics | TU Wien
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of mosquitto nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "operators.h"
#include <cmath>
#include <iostream>
#include <QtGlobal>
namespace operators {
Add g_add;
Subtract g_subtract;
Mul g_mul;
Div g_div;
Log g_log;
Exp g_exp;
NormExp g_normExp;
Relu g_relu;
Vvt g_vvt;
MatMul g_matMul;
ReduceSum g_reduceSum;
ReduceProd g_reduceProd;
ArrayXX Base::differentiateWrtA(const ArrayXX& a, const ArrayXX&)
{
return ArrayXX::Constant(a.rows(), a.cols(), 1);
}
ArrayXX Base::differentiateWrtB(const ArrayXX&, const ArrayXX& b)
{
return ArrayXX::Constant(b.rows(), b.cols(), 1);
}
ArrayXX Base::chainA(const ArrayXX& back, const ArrayXX& dA)
{
return back * dA;
}
ArrayXX Base::chainB(const ArrayXX& back, const ArrayXX& dB)
{
return back * dB;
}
Size Base::outSize(const Size& sizeA, const Size& sizeB)
{
// works for element wise and matmul/vvt
return Size(sizeA(0), sizeB(1));
}
ArrayXX UnaryBase::chainB(const ArrayXX&, const ArrayXX& dB)
{
return dB;
}
Size UnaryBase::outSize(const Size& sizeA, const Size&)
{
return sizeA;
}
ArrayXX Subtract::differentiateWrtB(const ArrayXX&, const ArrayXX& b)
{
return ArrayXX::Constant(b.rows(), b.cols(), -1);
}
ArrayXX Mul::differentiateWrtA(const ArrayXX&, const ArrayXX& b)
{
return b;
}
ArrayXX Mul::differentiateWrtB(const ArrayXX& a, const ArrayXX&)
{
return a;
}
ArrayXX Div::differentiateWrtA(const ArrayXX&, const ArrayXX& b)
{
return 1 / b;
}
ArrayXX Div::differentiateWrtB(const ArrayXX& a, const ArrayXX& b)
{
return -a / (b * b);
}
ArrayXX Log::eval(const ArrayXX& a, const ArrayXX&)
{
return Eigen::log(a);
}
ArrayXX Log::differentiateWrtA(const ArrayXX& a, const ArrayXX&)
{
return 1.f / a;
}
ArrayXX Exp::eval(const ArrayXX& a, const ArrayXX&)
{
return a.exp();
}
ArrayXX Exp::differentiateWrtA(const ArrayXX& a, const ArrayXX&)
{
return a.exp();
}
ArrayXX NormExp::eval(const ArrayXX& a, const ArrayXX& )
{
// std::cout << "NormExp: " << a.transpose() - a.maxCoeff() << std::endl;
// std::cout << "NormExp: " << (a.transpose() - a.maxCoeff()).exp() << std::endl;
return (a - a.maxCoeff()).exp();
}
ArrayXX NormExp::differentiateWrtA(const ArrayXX& a, const ArrayXX&)
{
return (a - a.maxCoeff()).exp();
}
ArrayXX Vvt::eval(const ArrayXX& a, const ArrayXX& b)
{
Q_ASSERT(a.cols() == 1);
Q_ASSERT(b.rows() == 1);
return a.matrix() * b.matrix();
}
ArrayXX Vvt::differentiateWrtA(const ArrayXX& a, const ArrayXX& b)
{
return ArrayXX::Constant(a.rows(), 1, 1).matrix() * b.matrix();
}
ArrayXX Vvt::differentiateWrtB(const ArrayXX& a, const ArrayXX& b)
{
return a.matrix() * ArrayXX::Constant(1, b.cols(), 1).matrix();
}
ArrayXX Vvt::chainA(const ArrayXX& back, const ArrayXX& dA)
{
// back = a.rows x b.cols
// dA = - " -
// ret is a.rows x 1
ArrayXX ret = (back * dA).rowwise().sum();
return ret;
}
ArrayXX Vvt::chainB(const ArrayXX& back, const ArrayXX& dB)
{
// back = a.rows x b.cols
// dB = - " -
// ret is 1 x b.cols
ArrayXX ret = (back * dB).colwise().sum();
return ret;
}
ArrayXX MatMul::eval(const ArrayXX& a, const ArrayXX& b)
{
return a.matrix() * b.matrix();
}
ArrayXX MatMul::differentiateWrtA(const ArrayXX&, const ArrayXX& b)
{
return b;
}
ArrayXX MatMul::differentiateWrtB(const ArrayXX& a, const ArrayXX&)
{
return a;
}
ArrayXX MatMul::chainA(const ArrayXX& back, const ArrayXX& dA)
{
return back.matrix() * dA.matrix().transpose();
}
ArrayXX MatMul::chainB(const ArrayXX& back, const ArrayXX& dB)
{
return dB.matrix().transpose() * back.matrix();
}
ArrayXX ReduceSum::eval(const ArrayXX& a, const ArrayXX&)
{
return ArrayXX::Constant(1, 1, a.sum());
}
ArrayXX ReduceSum::chainA(const ArrayXX& back, const ArrayXX& dA)
{
// back is 1 x 1
// dA is n x m
// ret is n x m
Q_ASSERT(back.size() == 1);
return dA * back(0, 0);
}
ArrayXX ReduceProd::eval(const ArrayXX& a, const ArrayXX&)
{
return ArrayXX::Constant(1, 1, a.prod());
}
ArrayXX ReduceProd::differentiateWrtA(const ArrayXX& a, const ArrayXX&)
{
return ArrayXX::Constant(a.rows(), a.cols(), a.prod()) / a;
}
ArrayXX ReduceProd::chainA(const ArrayXX& back, const ArrayXX& dA)
{
// back is 1 x 1
// dA is n x m
// ret is n x m
Q_ASSERT(back.size() == 1);
return dA * back(0, 0);
}
ArrayXX Relu::eval(const ArrayXX& a, const ArrayXX&)
{
// std::cout << "relu input: " << a.transpose() << std::endl;
return a.max(a * 0.01f);
}
ArrayXX Relu::differentiateWrtA(const ArrayXX& a, const ArrayXX&)
{
return (a > 0.f).cast<float>() * 0.99 + 0.01;
}
}