forked from collin80/GEVCU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsys_io.cpp
698 lines (614 loc) · 22.3 KB
/
sys_io.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
/*
* sys_io.cpp
*
* Handles the low level details of system I/O
*
Copyright (c) 2013 Collin Kidder, Michael Neuweiler, Charles Galpin
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
some portions based on code credited as:
Arduino Due ADC->DMA->USB 1MSPS
by stimmer
*/
#include "sys_io.h"
#undef HID_ENABLED
uint8_t dig[NUM_DIGITAL];
uint8_t adc[NUM_ANALOG][2];
uint8_t out[NUM_OUTPUT];
volatile int bufn,obufn;
volatile uint16_t adc_buf[NUM_ANALOG][256]; // 4 buffers of 256 readings
uint16_t adc_values[NUM_ANALOG * 2];
uint16_t adc_out_vals[NUM_ANALOG];
uint8_t sys_type;
int NumADCSamples;
//the ADC values fluctuate a lot so smoothing is required.
uint16_t adc_buffer[NUM_ANALOG][64];
uint8_t adc_pointer[NUM_ANALOG]; //pointer to next position to use
extern PrefHandler *sysPrefs;
ADC_COMP adc_comp[7]; //GEVCU 6.2 has 7 adc inputs but three are special
bool useRawADC = false;
bool useSPIADC = false;
SPISettings spi_settings(1000000, MSBFIRST, SPI_MODE3);
/*
There have been problems where the digital outputs of GEVCU aren't set to digital outputs with low state early enough and for some
people this triggers their connected relays. This code doesn't need EEPROM and so can execute very early in initialization. It assumes
that one has at least a GEVCU3 board which basically 99.9% of people do. Only the early developers would have anything earlier.
With this assumption in place it is possible to initialize all possible digital outputs right when the board starts up.
*/
void sys_boot_setup()
{
for (int i = 2; i < 10; i++) { //possible digital outs are 2 - 9
pinMode(out[i], OUTPUT);
digitalWrite(out[i], LOW);
}
}
//forces the digital I/O ports to a safe state. This is called very early in initialization.
void sys_early_setup() {
int i;
//the first order of business is to figure out what hardware we are running on and fill in
//the pin tables.
uint8_t rawadc;
sysPrefs->read(EESYS_RAWADC, &rawadc);
if (rawadc != 0) {
useRawADC = true;
Logger::info("Using raw ADC mode");
}
else useRawADC = false;
NumADCSamples = 64;
sysPrefs->read(EESYS_SYSTEM_TYPE, &sys_type);
if (sys_type == 2) {
Logger::info("Running on GEVCU2/DUED hardware.");
dig[0]=9;
dig[1]=11;
dig[2]=12;
dig[3]=13;
adc[0][0] = 1;
adc[0][1] = 0;
adc[1][0] = 3;
adc[1][1] = 2;
adc[2][0] = 5;
adc[2][1] = 4;
adc[3][0] = 7;
adc[3][1] = 6;
out[0] = 52;
out[1] = 22;
out[2] = 48;
out[3] = 32;
out[4] = 255;
out[5] = 255;
out[6] = 255;
out[7] = 255;
NumADCSamples = 32;
} else if (sys_type == 3) {
Logger::info("Running on GEVCU3 hardware");
dig[0]=48;
dig[1]=49;
dig[2]=50;
dig[3]=51;
adc[0][0] = 3;
adc[0][1] = 255;
adc[1][0] = 2;
adc[1][1] = 255;
adc[2][0] = 1;
adc[2][1] = 255;
adc[3][0] = 0;
adc[3][1] = 255;
out[0] = 9;
out[1] = 8;
out[2] = 7;
out[3] = 6;
out[4] = 255;
out[5] = 255;
out[6] = 255;
out[7] = 255;
useRawADC = true; //this board does require raw adc so force it.
} else if (sys_type == 4) {
Logger::info("Running on GEVCU 4.x hardware");
dig[0]=48;
dig[1]=49;
dig[2]=50;
dig[3]=51;
adc[0][0] = 3;
adc[0][1] = 255;
adc[1][0] = 2;
adc[1][1] = 255;
adc[2][0] = 1;
adc[2][1] = 255;
adc[3][0] = 0;
adc[3][1] = 255;
out[0] = 4;
out[1] = 5;
out[2] = 6;
out[3] = 7;
out[4] = 2;
out[5] = 3;
out[6] = 8;
out[7] = 9;
useRawADC = true; //this board does require raw adc so force it.
} else if (sys_type == 6) {
Logger::info("Running on GEVCU 6.2 hardware");
dig[0]=48;
dig[1]=49;
dig[2]=50;
dig[3]=51;
adc[0][0] = 255;
adc[0][1] = 255; //doesn't use SAM3X analog
adc[1][0] = 255;
adc[1][1] = 255;
adc[2][0] = 255;
adc[2][1] = 255;
adc[3][0] = 255;
adc[3][1] = 255;
out[0] = 4;
out[1] = 5;
out[2] = 6;
out[3] = 7;
out[4] = 2;
out[5] = 3;
out[6] = 8;
out[7] = 9;
useRawADC = false;
useSPIADC = true;
pinMode(26, OUTPUT); //Chip Select for first ADC chip
pinMode(28, OUTPUT); //Chip select for second ADC chip
pinMode(30, OUTPUT); //chip select for third ADC chip
digitalWrite(26, HIGH);
digitalWrite(28, HIGH);
digitalWrite(30, HIGH);
SPI.begin();
pinMode(32, INPUT); //Data Ready indicator
SPI.begin(); //sets up with default 4Mhz, MSB first
} else {
Logger::info("Running on legacy hardware?");
dig[0]=11;
dig[1]=9;
dig[2]=13;
dig[3]=12;
adc[0][0] = 1;
adc[0][1] = 0;
adc[1][0] = 2;
adc[1][1] = 3;
adc[2][0] = 4;
adc[2][1] = 5;
adc[3][0] = 7;
adc[3][1] = 6;
out[0] = 52;
out[1] = 22;
out[2] = 48;
out[3] = 32;
out[4] = 255;
out[5] = 255;
out[6] = 255;
out[7] = 255;
NumADCSamples = 32;
}
for (i = 0; i < NUM_DIGITAL; i++) pinMode(dig[i], INPUT);
for (i = 0; i < NUM_OUTPUT; i++) {
if (out[i] != 255) {
pinMode(out[i], OUTPUT);
digitalWrite(out[i], LOW);
}
}
}
void setup_ADC_params()
{
int i;
//requires the value to be contiguous in memory
for (i = 0; i < 7; i++) {
sysPrefs->read(EESYS_ADC0_GAIN + 4*i, &adc_comp[i].gain);
sysPrefs->read(EESYS_ADC0_OFFSET + 4*i, &adc_comp[i].offset);
Logger::debug("ADC:%d GAIN: %d Offset: %d", i, adc_comp[i].gain, adc_comp[i].offset);
if (i < NUM_ANALOG) {
for (int j = 0; j < NumADCSamples; j++) adc_buffer[i][j] = 0;
adc_pointer[i] = 0;
adc_values[i] = 0;
adc_out_vals[i] = 0;
}
}
}
/*
Initialize DMA driven ADC and read in gain/offset for each channel
*/
void setup_sys_io() {
int i;
setup_ADC_params();
if (useSPIADC) setupSPIADC();
else setupFastADC();
}
/*
Some of the boards are differential and thus require subtracting one ADC from another to obtain the true value. This function
handles that case. It also applies gain and offset
*/
uint16_t getDiffADC(uint8_t which) {
uint32_t low, high;
low = adc_values[adc[which][0]];
high = adc_values[adc[which][1]];
if (low < high) {
//first remove the bias to bring us back to where it rests at zero input volts
if (low >= adc_comp[which].offset) low -= adc_comp[which].offset;
else low = 0;
if (high >= adc_comp[which].offset) high -= adc_comp[which].offset;
else high = 0;
//gain multiplier is 1024 for 1 to 1 gain, less for lower gain, more for higher.
low *= adc_comp[which].gain;
low = low >> 10; //divide by 1024 again to correct for gain multiplier
high *= adc_comp[which].gain;
high = high >> 10;
//Lastly, the input scheme is basically differential so we have to subtract
//low from high to get the actual value
high = high - low;
}
else high = 0;
if (high > 4096) high = 0; //if it somehow got wrapped anyway then set it back to zero
return high;
}
/*
Exactly like the previous function but for non-differential boards (all the non-prototype boards are non-differential)
*/
uint16_t getRawADC(uint8_t which) {
uint32_t val;
if (sys_type < 6)
{
val = adc_values[adc[which][0]];
//first remove the bias to bring us back to where it rests at zero input volts
if (val >= adc_comp[which].offset) val -= adc_comp[which].offset;
else val = 0;
//gain multiplier is 1024 for 1 to 1 gain, less for lower gain, more for higher.
val *= adc_comp[which].gain;
val = val >> 10; //divide by 1024 again to correct for gain multiplier
if (val > 4096) val = 0; //if it somehow got wrapped anyway then set it back to zero
}
else
{
int32_t valu;
//first 4 analog readings must match old methods
if (which < 2)
{
valu = getSPIADCReading(CS1, (which & 1) + 1);
}
else if (which < 4) valu = getSPIADCReading(CS2, (which & 1) + 1);
//the next three are new though. 4 = current sensor, 5 = pack high (ref to mid), 6 = pack low (ref to mid)
else if (which == 4) valu = getSPIADCReading(CS1, 0);
else if (which == 5) valu = getSPIADCReading(CS3, 1);
else if (which == 6) valu = getSPIADCReading(CS3, 2);
val = valu >> 8; //cut reading down to 16 bit value
}
return val;
}
/*
Adds a new ADC reading to the buffer for a channel. The buffer is NumADCSamples large (either 32 or 64) and rolling
*/
void addNewADCVal(uint8_t which, uint16_t val) {
adc_buffer[which][adc_pointer[which]] = val;
adc_pointer[which] = (adc_pointer[which] + 1) % NumADCSamples;
}
/*
Take the arithmetic average of the readings in the buffer for each channel. This smooths out the ADC readings
*/
uint16_t getADCAvg(uint8_t which) {
uint32_t sum;
sum = 0;
for (int j = 0; j < NumADCSamples; j++) sum += adc_buffer[which][j];
sum = sum / NumADCSamples;
return ((uint16_t)sum);
}
/*
get value of one of the 4 analog inputs
On GEVCU5 or less
Uses a special buffer which has smoothed and corrected ADC values. This call is very fast
because the actua1 work is done via DMA and then a separate polled step.
On GEVCU6.2 or higher
Gets reading over SPI which is still pretty fast. The SPI connected chip is 24 bit
but too much of the code for GEVCU uses 16 bit integers for storage so the 24 bit values returned
are knocked down to 16 bit values before being passed along.
*/
uint16_t getAnalog(uint8_t which) {
if (which >= NUM_ANALOG && sys_type < 6) which = 0;
if (which >= 7 && sys_type == 6) which = 0;
if (!useSPIADC) return adc_out_vals[which];
else
{
int32_t valu;
//first 4 analog readings must match old methods
if (which < 2)
{
valu = getSPIADCReading(CS1, (which & 1) + 1);
}
else if (which < 4) valu = getSPIADCReading(CS2, (which & 1) + 1);
//the next three are new though. 4 = current sensor, 5 = pack high (ref to mid), 6 = pack low (ref to mid)
else if (which == 4) valu = getSPIADCReading(CS1, 0);
else if (which == 5) valu = getSPIADCReading(CS3, 1);
else if (which == 6) valu = getSPIADCReading(CS3, 2);
valu >>= 8;
valu -= adc_comp[which].offset;
valu = (valu * adc_comp[which].gain) / 1024;
return valu;
}
}
//the new pack voltage and current functions however, being new, don't have legacy problems so they're 24 bit ADC.
int32_t getCurrentReading()
{
int32_t valu;
valu = getSPIADCReading(CS1, 0);
valu -= (adc_comp[6].offset * 256);
valu = valu >> 3;
valu = (valu * adc_comp[6].gain) / 128;
return valu;
}
int32_t getPackHighReading()
{
int32_t valu;
valu = getSPIADCReading(CS3, 1);
valu -= (adc_comp[4].offset * 256);
valu = valu >> 3;
valu = (valu * adc_comp[4].gain) / 128;
return valu;
}
int32_t getPackLowReading()
{
int32_t valu;
valu = getSPIADCReading(CS3, 2);
valu -= (adc_comp[5].offset * 256);
valu = valu >> 3;
valu = (valu * adc_comp[5].gain) / 128;
return valu;
}
//get value of one of the 4 digital inputs
boolean getDigital(uint8_t which) {
if (which >= NUM_DIGITAL) which = 0;
return !(digitalRead(dig[which]));
}
//set output high or not
void setOutput(uint8_t which, boolean active) {
if (which >= NUM_OUTPUT) return;
if (out[which] == 255) return;
if (active)
digitalWrite(out[which], HIGH);
else digitalWrite(out[which], LOW);
}
//get current value of output state (high?)
boolean getOutput(uint8_t which) {
if (which >= NUM_OUTPUT) return false;
if (out[which] == 255) return false;
return digitalRead(out[which]);
}
/*
When the ADC reads in the programmed # of readings it will do two things:
1. It loads the next buffer and buffer size into current buffer and size
2. It sends this interrupt
This interrupt then loads the "next" fields with the proper values. This is
done with a four position buffer. In this way the ADC is constantly sampling
and this happens virtually for free. It all happens in the background with
minimal CPU overhead.
*/
void ADC_Handler() { // move DMA pointers to next buffer
int f=ADC->ADC_ISR;
if (f & (1<<27)) { //receive counter end of buffer
bufn=(bufn+1)&3;
ADC->ADC_RNPR=(uint32_t)adc_buf[bufn];
ADC->ADC_RNCR=256;
}
}
bool setupSPIADC()
{
bool chip1OK = false, chip2OK = false, chip3OK = false;
byte result;
//ADC chips use this format for SPI command byte: 0-1 = reserved set as 0, 2 = read en (0=write), 3-7 = register address
//delay(100); //yeah, probably evil to do...
SPI.beginTransaction(spi_settings);
SPI.transfer(0);
SPI.endTransaction();
Logger::info("Trying to wait ADC1 as ready");
for (int i = 0; i < 10; i++)
{
SPI.beginTransaction(spi_settings);
digitalWrite(CS1, LOW); //select first ADC chip
SPI.transfer(ADE7913_READ | ADE7913_STATUS0);
result = SPI.transfer(0);
digitalWrite(CS1, HIGH);
SPI.endTransaction();
if (result & 1) //not ready yet
{
delay(6);
//SerialUSB.println(result);
}
else
{
chip1OK = true;
break;
}
}
//SerialUSB.println();
if (!chip1OK) return false;
Logger::info("ADC1 is ready. Trying to enable clock out");
//Now enable the CLKOUT function on first unit so that the other two will wake up
SPI.beginTransaction(spi_settings);
digitalWrite(CS1, LOW);
SPI.transfer(ADE7913_WRITE | ADE7913_CONFIG);
SPI.transfer(1 | 2 << 4); //Set clock out enable and ADC_FREQ to 2khz
digitalWrite(CS1, HIGH);
SPI.endTransaction();
//Now we've got to wait 100ms plus around 20ms for the other chips to come up.
delay(110);
for (int i = 0; i < 10; i++)
{
SPI.beginTransaction(spi_settings);
digitalWrite(CS2, LOW); //select second ADC chip
SPI.transfer(ADE7913_READ | ADE7913_STATUS0);
result = SPI.transfer(0);
digitalWrite(CS2, HIGH);
SPI.endTransaction();
if (result & 1) //not ready yet
{
delay(6);
}
else
{
chip2OK = true;
//break;
}
SPI.beginTransaction(spi_settings);
digitalWrite(CS3, LOW); //select third ADC chip
SPI.transfer(ADE7913_READ | ADE7913_STATUS0);
result = SPI.transfer(0);
digitalWrite(CS3, HIGH);
SPI.endTransaction();
if (result & 1) //not ready yet
{
delay(6);
}
else
{
chip3OK = true;
//break;
}
if (chip2OK && chip3OK) break;
}
if (!chip2OK || !chip3OK) return false;
SPI.beginTransaction(spi_settings);
digitalWrite(CS2, LOW);
SPI.transfer(ADE7913_WRITE | ADE7913_CONFIG);
SPI.transfer(3 << 4 | 1 << 7); //Set ADC_FREQ to 1khz and lower bandwidth to 2khz
digitalWrite(CS2, HIGH);
SPI.endTransaction();
SPI.beginTransaction(spi_settings);
digitalWrite(CS3, LOW);
SPI.transfer(ADE7913_WRITE | ADE7913_CONFIG);
SPI.transfer(3 << 4 | 1 << 7); //Set ADC_FREQ to 1khz and lower bandwidth to 2khz
digitalWrite(CS3, HIGH);
SPI.endTransaction();
Logger::info("ADC chips 2 and 3 have been successfully started!");
return true;
}
int32_t getSPIADCReading(int CS, int sensor)
{
int32_t result;
int32_t byt;
Logger::debug("SPI Read CS: %i Sensor: %i", CS, sensor);
SPI.beginTransaction(spi_settings);
digitalWrite(CS, LOW);
if (sensor == 0) SPI.transfer(ADE7913_READ | ADE7913_AMP_READING);
if (sensor == 1) SPI.transfer(ADE7913_READ | ADE7913_ADC1_READING);
if (sensor == 2) SPI.transfer(ADE7913_READ | ADE7913_ADC2_READING);
byt = SPI.transfer(0);
result = (byt << 16);
byt = SPI.transfer(0);
result = result + (byt << 8);
byt = SPI.transfer(0);
result = result + byt;
//now we've got the whole 24 bit value but it is a signed 24 bit value so we must sign extend
if (result & (1 << 23)) result |= (255 << 24);
digitalWrite(CS, HIGH);
SPI.endTransaction();
return result;
}
/*
Setup the system to continuously read the proper ADC channels and use DMA to place the results into RAM
Testing to find a good batch of settings for how fast to do ADC readings. The relevant areas:
1. In the adc_init call it is possible to use something other than ADC_FREQ_MAX to slow down the ADC clock
2. ADC_MR has a clock divisor, start up time, settling time, tracking time, and transfer time. These can be adjusted
*/
void setupFastADC() {
pmc_enable_periph_clk(ID_ADC);
adc_init(ADC, SystemCoreClock, ADC_FREQ_MAX, ADC_STARTUP_FAST); //just about to change a bunch of these parameters with the next command
/*
The MCLK is 12MHz on our boards. The ADC can only run 1MHz so the prescaler must be at least 12x.
The ADC should take Tracking+Transfer for each read when it is set to switch channels with each read
Example:
5+7 = 12 clocks per read 1M / 12 = 83333 reads per second. For newer boards there are 4 channels interleaved
so, for each channel, the readings are 48uS apart. 64 of these readings are averaged together for a total of 3ms
worth of ADC in each average. This is then averaged with the current value in the ADC buffer that is used for output.
If, for instance, someone wanted to average over 6ms instead then the prescaler could be set to 24x instead.
*/
ADC->ADC_MR = (1 << 7) //free running
+ (5 << 8) //12x MCLK divider ((This value + 1) * 2) = divisor
+ (1 << 16) //8 periods start up time (0=0clks, 1=8clks, 2=16clks, 3=24, 4=64, 5=80, 6=96, etc)
+ (1 << 20) //settling time (0=3clks, 1=5clks, 2=9clks, 3=17clks)
+ (4 << 24) //tracking time (Value + 1) clocks
+ (2 << 28);//transfer time ((Value * 2) + 3) clocks
if (useRawADC)
ADC->ADC_CHER=0xF0; //enable A0-A3
else ADC->ADC_CHER=0xFF; //enable A0-A7
NVIC_EnableIRQ(ADC_IRQn);
ADC->ADC_IDR=~(1<<27); //dont disable the ADC interrupt for rx end
ADC->ADC_IER=1<<27; //do enable it
ADC->ADC_RPR=(uint32_t)adc_buf[0]; // DMA buffer
ADC->ADC_RCR=256; //# of samples to take
ADC->ADC_RNPR=(uint32_t)adc_buf[1]; // next DMA buffer
ADC->ADC_RNCR=256; //# of samples to take
bufn=obufn=0;
ADC->ADC_PTCR=1; //enable dma mode
ADC->ADC_CR=2; //start conversions
Logger::debug("Fast ADC Mode Enabled");
}
//polls for the end of an adc conversion event. Then processe buffer to extract the averaged
//value. It takes this value and averages it with the existing value in an 8 position buffer
//which serves as a super fast place for other code to retrieve ADC values
// This is only used when RAWADC is not defined
void sys_io_adc_poll() {
if (sys_type > 4) return;
if (obufn != bufn) {
uint32_t tempbuff[8] = {0,0,0,0,0,0,0,0}; //make sure its zero'd
//the eight or four enabled adcs are interleaved in the buffer
//this is a somewhat unrolled for loop with no incrementer. it's odd but it works
if (useRawADC) {
for (int i = 0; i < 256;) {
tempbuff[3] += adc_buf[obufn][i++];
tempbuff[2] += adc_buf[obufn][i++];
tempbuff[1] += adc_buf[obufn][i++];
tempbuff[0] += adc_buf[obufn][i++];
}
}
else {
for (int i = 0; i < 256;) {
tempbuff[7] += adc_buf[obufn][i++];
tempbuff[6] += adc_buf[obufn][i++];
tempbuff[5] += adc_buf[obufn][i++];
tempbuff[4] += adc_buf[obufn][i++];
tempbuff[3] += adc_buf[obufn][i++];
tempbuff[2] += adc_buf[obufn][i++];
tempbuff[1] += adc_buf[obufn][i++];
tempbuff[0] += adc_buf[obufn][i++];
}
}
//for (int i = 0; i < 256;i++) Logger::debug("%i - %i", i, adc_buf[obufn][i]);
//now, all of the ADC values are summed over 32/64 readings. So, divide by 32/64 (shift by 5/6) to get the average
//then add that to the old value we had stored and divide by two to average those. Lots of averaging going on.
if (useRawADC) {
for (int j = 0; j < 4; j++) {
adc_values[j] += (tempbuff[j] >> 6);
adc_values[j] = adc_values[j] >> 1;
}
}
else {
for (int j = 0; j < 8; j++) {
adc_values[j] += (tempbuff[j] >> 5);
adc_values[j] = adc_values[j] >> 1;
//Logger::debug("A%i: %i", j, adc_values[j]);
}
}
for (int i = 0; i < NUM_ANALOG; i++) {
int val;
if (useRawADC) val = getRawADC(i);
else val = getDiffADC(i);
// addNewADCVal(i, val);
// adc_out_vals[i] = getADCAvg(i);
adc_out_vals[i] = val;
}
obufn = bufn;
}
}