forked from XuyangBai/D3Feat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_KITTI.py
209 lines (158 loc) · 5.08 KB
/
training_KITTI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Common libs
import time
import os
import sys
# Custom libs
from utils.config import Config
from utils.trainer import ModelTrainer
from models.KPFCNN_model import KernelPointFCNN
# Dataset
from datasets.KITTI import KITTIDataset
# ----------------------------------------------------------------------------------------------------------------------
#
# Config Class
# \******************/
#
class KITTIConfig(Config):
"""
Override the parameters you want to modify for this dataset
"""
####################
# Dataset parameters
####################
is_test = False
gpu_id = 0
dataset = 'KITTI'
# Number of CPU threads for the input pipeline
input_threads = 8
#########################
# Architecture definition
#########################
architecture = ['simple',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb_strided',
'resnetb',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary',
'last_unary']
# KPConv specific parameters
num_kernel_points = 15
first_subsampling_dl = 0.30
# Density of neighborhoods for deformable convs (which need bigger radiuses). For normal conv we use KP_extent
density_parameter = 5.0
# Influence function of KPConv in ('constant', 'linear', gaussian)
KP_influence = 'linear'
KP_extent = 1.0
# Aggregation function of KPConv in ('closest', 'sum')
convolution_mode = 'sum'
# Can the network learn modulations in addition to deformations
modulated = False
# detector loss weight
det_loss_weight = 1
# Offset loss
# 'permissive' only constrains offsets inside the big radius
# 'fitting' helps deformed kernels to adapt to the geometry by penalizing distance to input points
offsets_loss = 'fitting'
offsets_decay = 0.1
# Choice of input features
in_features_dim = 1
# Batch normalization parameters
use_batch_norm = True
batch_norm_momentum = 0.98
# batch hard loss safe radius
safe_radius = 1
#####################
# Training parameters
#####################
# Maximal number of epochs
max_epoch = 200
# Learning rate management
learning_rate = 1e-1
momentum = 0.98
lr_decays = {i: 0.1 ** (1 / 80) for i in range(1, max_epoch)}
grad_clip_norm = 100.0
# Number of batch
batch_num = 1
# Number of keypoints
keypts_num = 1024
# Number of steps per epochs (cannot be None for this dataset)
epoch_steps = 1000
# Number of validation examples per epoch
validation_size = 100
# Number of epoch between each snapshot
snapshot_gap = 1
# Augmentations
augment_scale_anisotropic = True
augment_symmetries = [False, False, False]
augment_rotation = 1
augment_scale_min = 0.8
augment_scale_max = 1.2
augment_noise = 0.01
augment_occlusion = 'none'
augment_shift_range = 2
# Do we nee to save convergence
saving = True
saving_path = None
# ----------------------------------------------------------------------------------------------------------------------
#
# Main Call
# \***************/
#
if __name__ == '__main__':
##########################
# Initiate the environment
##########################
# Enable/Disable warnings (set level to '0'/'3')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0'
###########################
# Load the model parameters
###########################
config = KITTIConfig()
##############
# Prepare Data
##############
print()
print('Dataset Preparation')
print('*******************')
# Initiate dataset configuration
dataset = KITTIDataset(config.input_threads, config.first_subsampling_dl)
# Create subsampled input clouds
dl0 = config.first_subsampling_dl
# dataset.load_subsampled_clouds(dl0)
# Initialize input pipelines
dataset.init_input_pipeline(config)
# Test the input pipeline alone with this debug function
# dataset.check_input_pipeline_timing(config)
##############
# Define Model
##############
print('Creating Model')
print('**************\n')
t1 = time.time()
# Model class
model = KernelPointFCNN(dataset.flat_inputs, config)
# Trainer class
trainer = ModelTrainer(model)
# trainer = ModelTrainer(model, restore_snap='results_kitti/Log_/snapshots/snap-')
t2 = time.time()
print('\n----------------')
print('Done in {:.1f} s'.format(t2 - t1))
print('----------------\n')
################
# Start training
################
print('Start Training')
print('**************\n')
trainer.train(model, dataset)