-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_focal.py
38 lines (31 loc) · 1.01 KB
/
sample_focal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import scipy
import numpy
import pylab
from focal import *
# load image
filename = "./t10k-images-idx3-ubyte__idx_000__lbl_7_.png"
img = pylab.imread(filename) #grayscale image
pylab.figure()
pylab.imshow(img, cmap="Greys_r")
fcl = Focal()
num_kernels = len(fcl.kernels.full_kernels) # four simulated layers
# spikes contains a rank-ordered list of triples with the following
# information:
# [ pixel/neuron index (int), pixel value (float), layer id (int) ]
spikes = fcl.apply(img)
# we convert the spike list to 4 images, spike_imgs is a dictionary
# containing an image per simulated layer
spike_imgs = spike_trains_to_images_g(spikes, img, num_kernels)
pylab.figure()
i = 1
for k in spike_imgs.keys():
pylab.subplot(2, 2, i)
pylab.imshow(spike_imgs[k], cmap="Greys_r")
i += 1
#convert to spike source array
pylab.figure()
spk_src = focal_to_spike(spikes, img.shape,
spikes_per_time_block=10,
start_time=0., time_step=1.)
raster_plot_spike(spk_src)
pylab.show()