-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathviz2.py
157 lines (124 loc) · 4.73 KB
/
viz2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# -*- coding: utf-8 -*-
import math
from collections import OrderedDict
import numpy as np
import pandas as pd
import netCDF4
from bokeh.plotting import figure, show, output_notebook
from bokeh.models import DatetimeTickFormatter, ColumnDataSource, HoverTool, Plot, Range1d
from bokeh.palettes import RdBu11
from bokeh.models.glyphs import Text, Rect
import utils.world_countries as wc
from utils.colormap import RGBAColorMapper
colormap = RGBAColorMapper(-6, 6, RdBu11)
def get_slice(t, year, month):
i = (year - 1850)*12 + month - 1
return colormap.color(t[i, :, :])
def climate_map():
data = netCDF4.Dataset('data/Land_and_Ocean_LatLong1.nc')
t = data.variables['temperature']
image = get_slice(t, 1950, 1)
world_countries = wc.data.copy()
worldmap = pd.DataFrame.from_dict(world_countries, orient='index')
# Create your plot
p = figure(width=900, height=500, x_axis_type=None, y_axis_type=None,
x_range=[-180,180], y_range=[-90,90], toolbar_location="left")
p.image_rgba(
image=[image],
x=[-180], y=[-90],
dw=[360], dh=[180], name='image'
)
p.patches(xs=worldmap['lons'], ys=worldmap['lats'], fill_color="white", fill_alpha=0,
line_color="black", line_width=0.5)
return p
def legend():
# Set ranges
xdr = Range1d(0, 100)
ydr = Range1d(0, 500)
# Create plot
plot = Plot(
x_range=xdr,
y_range=ydr,
title="",
plot_width=100,
plot_height=500,
min_border=0,
toolbar_location=None,
outline_line_color="#FFFFFF",
)
# For each color in your palette, add a Rect glyph to the plot with the appropriate properties
palette = RdBu11
width = 40
for i, color in enumerate(palette):
rect = Rect(
x=40, y=(width * (i + 1)),
width=width, height=40,
fill_color=color, line_color='black'
)
plot.add_glyph(rect)
# Add text labels and add them to the plot
minimum = Text(x=50, y=0, text=['-6 ºC'])
plot.add_glyph(minimum)
maximum = Text(x=50, y=460, text=['6 ºC'])
plot.add_glyph(maximum)
return plot
def timeseries():
# Get data
df = pd.read_csv('data/Land_Ocean_Monthly_Anomaly_Average.csv')
df['datetime'] = pd.to_datetime(df['datetime'])
df = df[['anomaly','datetime']]
df['moving_average'] = pd.rolling_mean(df['anomaly'], 12)
df = df.fillna(0)
# List all the tools that you want in your plot separated by comas, all in one string.
TOOLS="crosshair,pan,wheel_zoom,box_zoom,reset,hover,previewsave"
# New figure
t = figure(x_axis_type = "datetime", width=1000, height=200,tools=TOOLS)
# Data processing
# The hover tools doesn't render datetime appropriately. We'll need a string.
# We just want dates, remove time
f = lambda x: str(x)[:7]
df["datetime_s"]=df[["datetime"]].applymap(f)
source = ColumnDataSource(df)
# Create plot
t.line('datetime', 'anomaly', color='lightgrey', legend='anom', source=source)
t.line('datetime', 'moving_average', color='red', legend='avg', source=source, name="mva")
# Style
xformatter = DatetimeTickFormatter(formats=dict(months=["%b %Y"], years=["%Y"]))
t.xaxis[0].formatter = xformatter
t.xaxis.major_label_orientation = math.pi/4
t.yaxis.axis_label = 'Anomaly(ºC)'
t.legend.orientation = "bottom_right"
t.grid.grid_line_alpha=0.2
t.toolbar_location=None
# Style hover tool
hover = t.select(dict(type=HoverTool))
hover.tooltips = """
<div>
<span style="font-size: 15px;">Anomaly</span>
<span style="font-size: 17px; color: red;">@anomaly</span>
</div>
<div>
<span style="font-size: 15px;">Month</span>
<span style="font-size: 10px; color: grey;">@datetime_s</span>
</div>
"""
hover.renderers = t.select("mva")
# Show plot
#show(t)
return t
# Add title
def title():
# Data
year = 1850
month = 1
years = [str(x) for x in np.arange(1850, 2015, 1)]
months = [str(x) for x in np.arange(1, 13, 1)]
months_str = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
month_str = months_str[month-1]
title = figure(width=1200, height=100, x_range=(0, 1200), y_range=(0, 100), toolbar_location=None,
x_axis_type=None, y_axis_type=None, outline_line_color="#FFFFFF", tools="", min_border=0)
title.text(x=500, y=5, text=[month_str], text_font_size='36pt', text_color='black',
name="month", text_font="Georgia")
title.text(x=350, y=5, text=[str(year)], text_font_size='36pt', text_color='black',
name="year",text_font="Georgia")
return title