-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.xml
131 lines (110 loc) · 7.42 KB
/
index.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
<channel>
<title>Chenyen Lai</title>
<link>http://chenyenlai.gitlab.io/</link>
<description>Recent content on Chenyen Lai</description>
<generator>Hugo -- gohugo.io</generator>
<lastBuildDate>Tue, 28 Aug 2018 00:00:00 +0000</lastBuildDate>
<atom:link href="http://chenyenlai.gitlab.io/index.xml" rel="self" type="application/rss+xml" />
<item>
<title>CV</title>
<link>http://chenyenlai.gitlab.io/cv/</link>
<pubDate>Sun, 01 Jan 2017 00:00:00 +0000</pubDate>
<guid>http://chenyenlai.gitlab.io/cv/</guid>
<description>Research Appointments (2017-) Postdoctoral Associate
Theoretical division (T-4) and Center for integrated nanotechnologies
Los Alamos National Laboratory, Los Alamos NM 87545 USA
(2014-2017) Postdoctoral Scholar
School of Natural Science
University of California, Merced, Merced CA 95340 USA
(2008-2009) Research Assistance
Department of Physics
National Tsing Hua University, Hsinchu 30013 Taiwan
Educations (2009-2014) Doctor of Philosophy
Department of Physics
University of California, Riverside, Riverside CA 92521 USA</description>
</item>
<item>
<title>Publications</title>
<link>http://chenyenlai.gitlab.io/publications/</link>
<pubDate>Sun, 01 Jan 2017 00:00:00 +0000</pubDate>
<guid>http://chenyenlai.gitlab.io/publications/</guid>
<description>WIP 2 Chen-Yen Lai, S. A. Trugman, D. A. Yarotski, and Jian-Xin Zhu “Time-resolved Optical Absorption Spectroscopy in a Terahertz-driven Hybrid System of Plasmons and Excitons.”
In preparation.
1 Chen-Yen Lai and S. A. Trugman,
“Absence of diffusion and fractal geometry in Holstein model at high temperature.”
In preparation.
Preprint Peer-reviewed 18 Chen-Yen Lai and Jian-Xin Zhu,
“Ultrafast X-ray Absorption Spectroscopy of Strongly Sorrelated Systems: Core Hole Effect.”</description>
</item>
<item>
<title>Conference</title>
<link>http://chenyenlai.gitlab.io/conference/</link>
<pubDate>Sun, 01 Jan 2017 00:00:00 +0000</pubDate>
<guid>http://chenyenlai.gitlab.io/conference/</guid>
<description>Future Conference APS March Meeting, Denver CO, 2020 Talks (Bold face are invited) “Ultrafast spectroscopy of strongly correlated systems.” (Poster)
Strongly Correlated Quantum Materials, Santa Fe NM, Apr 29, 2019.
“Non-equilibrium dynamics of spin and charge correlation in strongly correlated systems from pump-probe spectroscopy.&rdquo;
APS March Meeting, Boston MA, Mar 6, 2019.
“Microscopic dynamics in the Holstein model at high temperature: Absence of diffusion.</description>
</item>
<item>
<title>Collaborators</title>
<link>http://chenyenlai.gitlab.io/collaborators/</link>
<pubDate>Sun, 01 Jan 2017 00:00:00 +0000</pubDate>
<guid>http://chenyenlai.gitlab.io/collaborators/</guid>
<description>Dr. Jian-Xin Zhu Los Alamos National Laboratory
Dr. Stuart A. Trugman Los Alamos National Laboratory
Dr. Jhih-Shih You The Leibniz Institute for Solid State and Materials Research
Prof. Chih-Chun Chien University of California, Merced
Dr. Mekena Metcalf Lawrence Berkeley National Laboratory
Prof. Massimiliano Di Ventra University of California, San Diego
Prof. Michael Scheibner University of California, Merced
Prof. Shan-Wen Tsai University of California, Riverside
Prof. Yannick Meurice University of Iowa</description>
</item>
<item>
<title>MISC</title>
<link>http://chenyenlai.gitlab.io/misc/</link>
<pubDate>Sun, 01 Jan 2017 00:00:00 +0000</pubDate>
<guid>http://chenyenlai.gitlab.io/misc/</guid>
<description>Photography One of my long term habits since my childhood. Most of my work are on natural scene and wild animals. If you are interested, please pay a visit to my flickr page
Hiking Downhill Skiing I learned how to ski on 2016-17 winter with my son (he was 4 years old) at Ski China Peak. I admit that I am a slow learner on this (Yes, I fall all the time.</description>
</item>
<item>
<title>Time-resolved x-ray absorption spectroscopy</title>
<link>http://chenyenlai.gitlab.io/post/2018-08-28-timeresolvedxas/</link>
<pubDate>Tue, 28 Aug 2018 00:00:00 +0000</pubDate>
<guid>http://chenyenlai.gitlab.io/post/2018-08-28-timeresolvedxas/</guid>
<description>arXiv:1808.08243 (LA-UR-17-29749)
We investigate the ultrafast pump-probe phenomenon in strongly correlated systems. The static x-ray absorption spectroscopy (XAS) reveals the metal-insulator transition and strongly correlated effects in one-dimensional Fermi Hubbard model. The laser pump excites the system into a thermal state where the excitations can be measured from the probe pulse. The resonance between the frequency of the pump pulse and the Mott gap can be observed from both the frequency shift and the change of weight.</description>
</item>
<item>
<title>Variance of a quantum observable</title>
<link>http://chenyenlai.gitlab.io/post/2018-05-01-currentfluctuations/</link>
<pubDate>Tue, 01 May 2018 00:00:00 +0000</pubDate>
<guid>http://chenyenlai.gitlab.io/post/2018-05-01-currentfluctuations/</guid>
<description>arXiv:1805.06443 (LA-UR-18-23857)
As we learned the basic notion of quantum mechanics, uncertainty principle, the measurement in quantum theory results in probability. As people usually discuss the average of an observable, its variance, however, is not discussed in the scope. We discuss a basic quantity in quantum transport - variance of the current. Two systems are discussed, 1) closed system with magnetic flux which is also known as persistent current; 2) open quantum system of simple connections.</description>
</item>
<item>
<title>Current circulation in triangle quantum-dot metastructures</title>
<link>http://chenyenlai.gitlab.io/post/2018-02-06-circulationtqdm/</link>
<pubDate>Tue, 06 Feb 2018 00:00:00 +0000</pubDate>
<guid>http://chenyenlai.gitlab.io/post/2018-02-06-circulationtqdm/</guid>
<description>arXiv:1802.02121 (LA-UR-18-20615)
In this work, we study transport in a simple triangle quantum-dot metastructures. By modeling the systems as open quantum systems, circulating current is found without external magnetic field/vector potential. The same finding is also discovered in isolated systems. The models and results can be tested in proposed experiments. This study reveals interesting transport phenomenon in non-trivial topology and geometry of the quantum systems.
Proposed Experiments Current Circulation </description>
</item>
<item>
<title>Memory effect for interaction driven quantum gas</title>
<link>http://chenyenlai.gitlab.io/post/2017-09-25-halfint/</link>
<pubDate>Thu, 28 Sep 2017 00:00:00 +0000</pubDate>
<guid>http://chenyenlai.gitlab.io/post/2017-09-25-halfint/</guid>
<description>Phys. Rev. A 96, 033628 (2017), also in arXiv:1706.00441
Quantifying memory effect in a quantum system is not trivial. Although most of the quantum system exhibit memory effect, it does not emerge in every physical observable. Here, in 1D interacting Fermi and Bose gas, the steady state current show memory effect under an interaction quench on half of the system.
Quantify Quantum Memory Effects </description>
</item>
</channel>
</rss>