forked from HeegerGao/CRIL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwgangp.py
187 lines (151 loc) · 6.79 KB
/
wgangp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
import os
import numpy as np
import math
import sys
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
from torch.utils.tensorboard import SummaryWriter
import shutil
from typing import List
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd as autograd
import torch
from utils import CustomDataSetForFirstFrame
from models import Generator, Discriminator
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=100000, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=1024, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=64, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--n_critic", type=int, default=5, help="number of training steps for discriminator per iter")
parser.add_argument("--clip_value", type=float, default=0.01, help="lower and upper clip value for disc. weights")
parser.add_argument("--sample_interval", type=int, default=1000, help="interval betwen image samples")
parser.add_argument("--ngf", type=int, default=32, help="channels of generator")
parser.add_argument("--ndf", type=int, default=32, help="channels of discriminitor")
arg = parser.parse_args()
img_shape = (arg.channels, arg.img_size, arg.img_size)
cuda = True if torch.cuda.is_available() else False
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
def compute_gradient_penalty(D, real_samples, fake_samples):
"""Calculates the gradient penalty loss for WGAN GP"""
# Random weight term for interpolation between real and fake samples
alpha = Tensor(np.random.random((real_samples.size(0), 1, 1, 1)))
# Get random interpolation between real and fake samples
interpolates = (alpha * real_samples + ((1 - alpha) * fake_samples)).requires_grad_(True)
d_interpolates = D(interpolates)
d_interpolates = torch.reshape(d_interpolates, (d_interpolates.shape[0], d_interpolates.shape[1])).cuda()
fake = Variable(Tensor(real_samples.shape[0], 1).fill_(1.0), requires_grad=False)
# Get gradient w.r.t. interpolates
gradients = autograd.grad(
outputs=d_interpolates,
inputs=interpolates,
grad_outputs=fake,
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
def train_wgangp(
data_path: List,
env_name: List,
load_old_models,
old_g_path:str=None,
old_d_path:str=None,
):
task_name = ''
for name in env_name:
task_name += name
task_name += '_'
root_path = 'trained_generators/' + task_name
os.makedirs(root_path, exist_ok=True)
log_dir = 'trained_generators/log/' + task_name
if os.path.exists(log_dir):
shutil.rmtree(log_dir)
os.makedirs(log_dir, exist_ok=True)
else:
os.makedirs(log_dir, exist_ok=True)
writer = SummaryWriter(log_dir)
# Loss weight for gradient penalty
lambda_gp = 10
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
if load_old_models == True:
generator = torch.load(old_g_path)
discriminator = torch.load(old_d_path)
if cuda:
generator.cuda()
discriminator.cuda()
dataloader = torch.utils.data.DataLoader(
dataset=CustomDataSetForFirstFrame(
paths=data_path,
),
batch_size=arg.batch_size,
shuffle=False,
)
# Optimizers
optimizer_G = torch.optim.RMSprop(generator.parameters(), lr=arg.lr)
optimizer_D = torch.optim.RMSprop(discriminator.parameters(), lr=arg.lr)
# ----------
# Training
# ----------
batches_done = 0
for epoch in range(arg.n_epochs):
for i, imgs in enumerate(dataloader):
# Configure input
real_imgs = Variable(imgs.type(Tensor))
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Sample noise as generator input
z = torch.randn(imgs.shape[0], arg.latent_dim, 1, 1).cuda()
# Generate a batch of images
fake_imgs = generator(z)
# Real images
real_validity = discriminator(real_imgs)
# Fake images
fake_validity = discriminator(fake_imgs)
# Gradient penalty
gradient_penalty = compute_gradient_penalty(discriminator, real_imgs.data, fake_imgs.data)
# Adversarial loss
d_loss = -torch.mean(real_validity) + torch.mean(fake_validity) + lambda_gp * gradient_penalty
d_loss.backward()
optimizer_D.step()
optimizer_G.zero_grad()
# Train the generator every n_critic steps
if i % arg.n_critic == 0:
# -----------------
# Train Generator
# -----------------
# Generate a batch of images
fake_imgs = generator(z)
# Loss measures generator's ability to fool the discriminator
# Train on fake images
fake_validity = discriminator(fake_imgs)
g_loss = -torch.mean(fake_validity)
g_loss.backward()
optimizer_G.step()
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, arg.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
)
writer.add_scalar('D loss', d_loss.item(), batches_done)
writer.add_scalar('G loss', g_loss.item(), batches_done)
if batches_done % arg.sample_interval == 0:
torch.save(generator, root_path+'/G'+str(batches_done)+'.pth')
torch.save(discriminator, root_path+'/D'+str(batches_done)+'.pth')
save_image(fake_imgs.data[:16], root_path+'/%d.png' % batches_done, nrow=4, normalize=True)
batches_done += arg.n_critic