forked from DiegoAE/HMMLFM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmocap.py
97 lines (78 loc) · 2.83 KB
/
mocap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import GPy
from hmm.continuous.LFMHMMcontinuous import LFMHMMcontinuous
from matplotlib import pyplot as plt
import numpy as np
seed = np.random.random_integers(10000)
seed = 4748
np.random.seed(seed)
print "Using GPy version: ", GPy.__version__
data = GPy.util.datasets.cmu_mocap('43', ['01'], sample_every=1)
print data['info']
Y = data['Y'][70:, :]
nsamples, nfeatures = Y.shape
print "Y's shape ", Y.shape
channel_id = 9
plt.plot(np.arange(nsamples), Y[:, channel_id])
plt.show()
### LFM HMM
number_lfm = 7
outputs = 1
start_t = 0.1
end_t = 5.1
locations_per_segment = 20
n_latent_forces = 1 # TODO: currently not passing this argument to the model.
lfm_hmm = LFMHMMcontinuous(outputs, number_lfm, locations_per_segment, start_t,
end_t, verbose=True)
number_training_sequences = 1
obs = []
for s in xrange(number_training_sequences):
number_segments = 18 # fixed for now.
c_obs = np.zeros((number_segments, locations_per_segment))
signal = Y[:, channel_id]
idx = 0
for i in xrange(number_segments):
c_obs[i, :] = signal[idx:idx + locations_per_segment]
idx = idx + locations_per_segment - 1
obs.append(c_obs)
lfm_hmm.set_observations(obs)
print "before training"
print lfm_hmm.pi
print lfm_hmm.A
print lfm_hmm.LFMparams
train_flag = False
if train_flag:
lfm_hmm.train()
lfm_hmm.save_params("/home/diego/tmp/Parameters/MOCAP", "pruebaMOCAP")
else:
lfm_hmm.read_params("/home/diego/tmp/Parameters/MOCAP", "pruebaMOCAP")
print "after training"
print lfm_hmm.pi
print lfm_hmm.A
print lfm_hmm.LFMparams
# Second experiment: Regression
number_testing_points = 100
regression_hidden_states = lfm_hmm._viterbi()[0]
last_value = 0
plt.axvline(x=last_value, color='red', linestyle='--')
considered_segments = 18 # fixed for now.
for i in xrange(considered_segments):
c_hidden_state = regression_hidden_states[i]
c_obv = obs[0][i]
# predicting more time steps
t_test = np.linspace(start_t, end_t, number_testing_points)
mean_pred, cov_pred = lfm_hmm.predict(t_test, c_hidden_state, c_obv)
sl = lfm_hmm.sample_locations
plt.scatter(last_value + sl - sl[0], c_obv, facecolors='none',
label=[None, 'observations'][i == 0])
plt.plot(last_value + t_test - t_test[0], mean_pred, color='green',
label=[None, 'predicted mean'][i == 0])
diag_cov = np.diag(cov_pred)
plt.plot(last_value + t_test - t_test[0], mean_pred.flatten() - 2 * np.sqrt(diag_cov), 'k--')
plt.plot(last_value + t_test - t_test[0], mean_pred.flatten() + 2 * np.sqrt(diag_cov), 'k--')
last_value = last_value + end_t - start_t
plt.axvline(x=last_value, color='red', linestyle='--')
print "Inferred hidden states ", regression_hidden_states
plt.title("Fitting of the model given an observation sequence.")
plt.legend(loc='upper left')
plt.show()
print "USED SEED", seed