-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathloss_definition.py
executable file
·47 lines (39 loc) · 1.59 KB
/
loss_definition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import torch.nn as nn
from utils.params import ParamsPack
param_pack = ParamsPack()
import math
class WingLoss(nn.Module):
def __init__(self, omega=10, epsilon=2):
super(WingLoss, self).__init__()
self.omega = omega
self.epsilon = epsilon
self.log_term = math.log(1 + self.omega / self.epsilon)
def forward(self, pred, target, kp=False):
n_points = pred.shape[2]
pred = pred.transpose(1,2).contiguous().view(-1, 3*n_points)
target = target.transpose(1,2).contiguous().view(-1, 3*n_points)
y = target
y_hat = pred
delta_y = (y - y_hat).abs()
delta_y1 = delta_y[delta_y < self.omega]
delta_y2 = delta_y[delta_y >= self.omega]
loss1 = self.omega * torch.log(1 + delta_y1 / self.epsilon)
C = self.omega - self.omega * self.log_term
loss2 = delta_y2 - C
return (loss1.sum() + loss2.sum()) / (len(loss1) + len(loss2))
class ParamLoss(nn.Module):
"""Input and target are all 62-d param"""
def __init__(self):
super(ParamLoss, self).__init__()
self.criterion = nn.MSELoss(reduction="none")
def forward(self, input, target, mode = 'normal'):
if mode == 'normal':
loss = self.criterion(input[:,:12], target[:,:12]).mean(1) + self.criterion(input[:,12:], target[:,12:]).mean(1)
return torch.sqrt(loss)
elif mode == 'only_3dmm':
loss = self.criterion(input[:,:50], target[:,12:62]).mean(1)
return torch.sqrt(loss)
return torch.sqrt(loss.mean(1))
if __name__ == "__main__":
pass