-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathmodel_building.py
executable file
·309 lines (247 loc) · 10.8 KB
/
model_building.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import torch
import torch.nn as nn
import numpy as np
from torchvision import transforms as T
import scipy.io as sio
# All data parameters import
from utils.params import ParamsPack
param_pack = ParamsPack()
from backbone_nets import resnet_backbone
from backbone_nets import mobilenetv1_backbone
from backbone_nets import mobilenetv2_backbone
from backbone_nets import ghostnet_backbone
from backbone_nets.pointnet_backbone import MLP_for, MLP_rev
from loss_definition import ParamLoss, WingLoss
from backbone_nets.ResNeSt import resnest50, resnest101
import time
from utils.inference import predict_sparseVert, predict_denseVert, predict_pose, crop_img
from FaceBoxes import FaceBoxes
import cv2
import types
def parse_param_62(param):
"""Work for only tensor"""
p_ = param[:, :12].reshape(-1, 3, 4)
p = p_[:, :, :3]
offset = p_[:, :, -1].reshape(-1, 3, 1)
alpha_shp = param[:, 12:52].reshape(-1, 40, 1)
alpha_exp = param[:, 52:62].reshape(-1, 10, 1)
return p, offset, alpha_shp, alpha_exp
# Image-to-parameter
class I2P(nn.Module):
def __init__(self, args):
super(I2P, self).__init__()
self.args = args
# backbone definition
if 'mobilenet_v2' in self.args.arch:
self.backbone = getattr(mobilenetv2_backbone, args.arch)(pretrained=False)
elif 'mobilenet' in self.args.arch:
self.backbone = getattr(mobilenetv1_backbone, args.arch)()
elif 'resnet' in self.args.arch:
self.backbone = getattr(resnet_backbone, args.arch)(pretrained=False)
elif 'ghostnet' in self.args.arch:
self.backbone = getattr(ghostnet_backbone, args.arch)()
elif 'resnest' in self.args.arch:
self.backbone = resnest50()
else:
raise RuntimeError("Please choose [mobilenet_v2, mobilenet_1, resnet50, or ghostnet]")
def forward(self,input, target):
"""Training time forward"""
_3D_attr, avgpool = self.backbone(input)
_3D_attr_GT = target.type(torch.cuda.FloatTensor)
return _3D_attr, _3D_attr_GT, avgpool
def forward_test(self, input):
""" Testing time forward."""
_3D_attr, avgpool = self.backbone(input)
return _3D_attr, avgpool
# Main model SynergyNet definition
class SynergyNet(nn.Module):
def __init__(self, args):
super(SynergyNet, self).__init__()
self.triangles = sio.loadmat('./3dmm_data/tri.mat')['tri'] -1
self.triangles = torch.Tensor(self.triangles.astype(np.int64)).long().cuda()
self.img_size = args.img_size
# Image-to-parameter
self.I2P = I2P(args)
# Forward
self.forwardDirection = MLP_for(68)
# Reverse
self.reverseDirection = MLP_rev(68)
self.LMKLoss_3D = WingLoss()
self.ParamLoss = ParamLoss()
self.loss = {'loss_LMK_f0':0.0,
'loss_LMK_pointNet': 0.0,
'loss_Param_In':0.0,
'loss_Param_S2': 0.0,
'loss_Param_S1S2': 0.0,
}
self.register_buffer('param_mean', torch.Tensor(param_pack.param_mean).cuda(non_blocking=True))
self.register_buffer('param_std', torch.Tensor(param_pack.param_std).cuda(non_blocking=True))
self.register_buffer('w_shp', torch.Tensor(param_pack.w_shp).cuda(non_blocking=True))
self.register_buffer('u', torch.Tensor(param_pack.u).cuda(non_blocking=True))
self.register_buffer('w_exp', torch.Tensor(param_pack.w_exp).cuda(non_blocking=True))
# If doing only offline evaluation, use these
# self.u_base = torch.Tensor(param_pack.u_base).cuda(non_blocking=True)
# self.w_shp_base = torch.Tensor(param_pack.w_shp_base).cuda(non_blocking=True)
# self.w_exp_base = torch.Tensor(param_pack.w_exp_base).cuda(non_blocking=True)
# Online training needs these to parallel
self.register_buffer('u_base', torch.Tensor(param_pack.u_base).cuda(non_blocking=True))
self.register_buffer('w_shp_base', torch.Tensor(param_pack.w_shp_base).cuda(non_blocking=True))
self.register_buffer('w_exp_base', torch.Tensor(param_pack.w_exp_base).cuda(non_blocking=True))
self.keypoints = torch.Tensor(param_pack.keypoints).long()
self.data_param = [self.param_mean, self.param_std, self.w_shp_base, self.u_base, self.w_exp_base]
def reconstruct_vertex_62(self, param, whitening=True, dense=False, transform=True, lmk_pts=68):
"""
Whitening param -> 3d vertex, based on the 3dmm param: u_base, w_shp, w_exp
dense: if True, return dense vertex, else return 68 sparse landmarks. All dense or sparse vertex is transformed to
image coordinate space, but without alignment caused by face cropping.
transform: whether transform to image space
Working with batched tensors. Using Fortan-type reshape.
"""
if whitening:
if param.shape[1] == 62:
param_ = param * self.param_std[:62] + self.param_mean[:62]
else:
raise RuntimeError('length of params mismatch')
p, offset, alpha_shp, alpha_exp = parse_param_62(param_)
if dense:
vertex = p @ (self.u + self.w_shp @ alpha_shp + self.w_exp @ alpha_exp).contiguous().view(-1, 53215, 3).transpose(1,2) + offset
if transform:
# transform to image coordinate space
vertex[:, 1, :] = param_pack.std_size + 1 - vertex[:, 1, :]
else:
"""For 68 pts"""
vertex = p @ (self.u_base + self.w_shp_base @ alpha_shp + self.w_exp_base @ alpha_exp).contiguous().view(-1, lmk_pts, 3).transpose(1,2) + offset
if transform:
# transform to image coordinate space
vertex[:, 1, :] = param_pack.std_size + 1 - vertex[:, 1, :]
return vertex
def forward(self, input, target):
_3D_attr, _3D_attr_GT, avgpool = self.I2P(input, target)
vertex_lmk = self.reconstruct_vertex_62(_3D_attr, dense=False)
vertex_GT_lmk = self.reconstruct_vertex_62(_3D_attr_GT, dense=False)
self.loss['loss_LMK_f0'] = 0.05 *self.LMKLoss_3D(vertex_lmk, vertex_GT_lmk, kp=True)
self.loss['loss_Param_In'] = 0.02 * self.ParamLoss(_3D_attr, _3D_attr_GT)
point_residual = self.forwardDirection(vertex_lmk, avgpool, _3D_attr[:,12:52], _3D_attr[:,52:62])
vertex_lmk = vertex_lmk + 0.05 * point_residual
self.loss['loss_LMK_pointNet'] = 0.05 * self.LMKLoss_3D(vertex_lmk, vertex_GT_lmk, kp=True)
_3D_attr_S2 = self.reverseDirection(vertex_lmk)
self.loss['loss_Param_S2'] = 0.02 * self.ParamLoss(_3D_attr_S2, _3D_attr_GT, mode='only_3dmm')
self.loss['loss_Param_S1S2'] = 0.001 * self.ParamLoss(_3D_attr_S2, _3D_attr, mode='only_3dmm')
return self.loss
def forward_test(self, input):
"""test time forward"""
_3D_attr, _ = self.I2P.forward_test(input)
return _3D_attr
def get_losses(self):
return self.loss.keys()
# Main model SynergyNet definition
class WrapUpSynergyNet(nn.Module):
def __init__(self):
super(WrapUpSynergyNet, self).__init__()
self.triangles = sio.loadmat('./3dmm_data/tri.mat')['tri'] -1
self.triangles = torch.Tensor(self.triangles.astype(np.int64)).long()
args = types.SimpleNamespace()
args.arch = 'mobilenet_v2'
args.checkpoint_fp = 'pretrained/best.pth.tar'
# Image-to-parameter
self.I2P = I2P(args)
# Forward
self.forwardDirection = MLP_for(68)
# Reverse
self.reverseDirection = MLP_rev(68)
self.LMKLoss_3D = WingLoss()
self.ParamLoss = ParamLoss()
self.loss = {'loss_LMK_f0':0.0,
'loss_LMK_pointNet': 0.0,
'loss_Param_In':0.0,
'loss_Param_S2': 0.0,
'loss_Param_S1S2': 0.0,
}
self.register_buffer('param_mean', torch.Tensor(param_pack.param_mean))
self.register_buffer('param_std', torch.Tensor(param_pack.param_std))
self.register_buffer('w_shp', torch.Tensor(param_pack.w_shp))
self.register_buffer('u', torch.Tensor(param_pack.u))
self.register_buffer('w_exp', torch.Tensor(param_pack.w_exp))
# Online training needs these to parallel
self.register_buffer('u_base', torch.Tensor(param_pack.u_base))
self.register_buffer('w_shp_base', torch.Tensor(param_pack.w_shp_base))
self.register_buffer('w_exp_base', torch.Tensor(param_pack.w_exp_base))
self.keypoints = torch.Tensor(param_pack.keypoints).long()
self.data_param = [self.param_mean, self.param_std, self.w_shp_base, self.u_base, self.w_exp_base]
try:
print("loading weights from ", args.checkpoint_fp)
self.load_weights(args.checkpoint_fp)
except:
pass
self.eval()
def reconstruct_vertex_62(self, param, whitening=True, dense=False, transform=True, lmk_pts=68):
"""
Whitening param -> 3d vertex, based on the 3dmm param: u_base, w_shp, w_exp
dense: if True, return dense vertex, else return 68 sparse landmarks. All dense or sparse vertex is transformed to
image coordinate space, but without alignment caused by face cropping.
transform: whether transform to image space
Working with batched tensors. Using Fortan-type reshape.
"""
if whitening:
if param.shape[1] == 62:
param_ = param * self.param_std[:62] + self.param_mean[:62]
else:
raise RuntimeError('length of params mismatch')
p, offset, alpha_shp, alpha_exp = parse_param_62(param_)
if dense:
vertex = p @ (self.u + self.w_shp @ alpha_shp + self.w_exp @ alpha_exp).contiguous().view(-1, 53215, 3).transpose(1,2) + offset
if transform:
# transform to image coordinate space
vertex[:, 1, :] = param_pack.std_size + 1 - vertex[:, 1, :]
else:
"""For 68 pts"""
vertex = p @ (self.u_base + self.w_shp_base @ alpha_shp + self.w_exp_base @ alpha_exp).contiguous().view(-1, lmk_pts, 3).transpose(1,2) + offset
if transform:
# transform to image coordinate space
vertex[:, 1, :] = param_pack.std_size + 1 - vertex[:, 1, :]
return vertex
def forward_test(self, input):
"""test time forward"""
_3D_attr, _ = self.I2P.forward_test(input)
return _3D_attr
def load_weights(self, path):
model_dict = self.state_dict()
checkpoint = torch.load(path, map_location=lambda storage, loc: storage)['state_dict']
# because the model is trained by multiple gpus, prefix 'module' should be removed
for k in checkpoint.keys():
model_dict[k.replace('module.', '')] = checkpoint[k]
self.load_state_dict(model_dict, strict=False)
def get_all_outputs(self, input):
"""convenient api to get 3d landmarks, face pose, 3d faces"""
face_boxes = FaceBoxes()
rects = face_boxes(input)
# storage
pts_res = []
poses = []
vertices_lst = []
for idx, rect in enumerate(rects):
roi_box = rect
# enlarge the bbox a little and do a square crop
HCenter = (rect[1] + rect[3])/2
WCenter = (rect[0] + rect[2])/2
side_len = roi_box[3]-roi_box[1]
margin = side_len * 1.2 // 2
roi_box[0], roi_box[1], roi_box[2], roi_box[3] = WCenter-margin, HCenter-margin, WCenter+margin, HCenter+margin
img = crop_img(input, roi_box)
img = cv2.resize(img, dsize=(120, 120), interpolation=cv2.INTER_LANCZOS4)
img = torch.from_numpy(img)
img = img.permute(2,0,1)
img = img.unsqueeze(0)
img = (img - 127.5)/ 128.0
with torch.no_grad():
param = self.forward_test(img)
param = param.squeeze().cpu().numpy().flatten().astype(np.float32)
lmks = predict_sparseVert(param, roi_box, transform=True)
vertices = predict_denseVert(param, roi_box, transform=True)
angles, translation = predict_pose(param, roi_box)
pts_res.append(lmks)
vertices_lst.append(vertices)
poses.append([angles, translation])
return pts_res, vertices_lst, poses
if __name__ == '__main__':
pass