-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathuv_texture_realFaces.py
126 lines (102 loc) · 4.5 KB
/
uv_texture_realFaces.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import torchvision.transforms as transforms
import numpy as np
import cv2
from utils.ddfa import ToTensor, Normalize
from model_building import SynergyNet
from utils.inference import crop_img, predict_denseVert
import argparse
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
import os
import os.path as osp
import glob
from FaceBoxes import FaceBoxes
from utils.render import render
# Following 3DDFA-V2, we also use 120x120 resolution
IMG_SIZE = 120
def write_obj_with_colors(obj_name, vertices, triangles, colors):
triangles = triangles.copy()
if obj_name.split('.')[-1] != 'obj':
obj_name = obj_name + '.obj'
with open(obj_name, 'w') as f:
for i in range(vertices.shape[1]):
s = 'v {:.4f} {:.4f} {:.4f} {} {} {}\n'.format(vertices[0, i], vertices[1, i], vertices[2, i], colors[i, 2],
colors[i, 1], colors[i, 0])
f.write(s)
for i in range(triangles.shape[1]):
s = 'f {} {} {}\n'.format(triangles[0, i], triangles[1, i], triangles[2, i])
f.write(s)
def main(args):
# load pre-tained model
checkpoint_fp = 'pretrained/best.pth.tar'
args.arch = 'mobilenet_v2'
args.devices_id = [0]
checkpoint = torch.load(checkpoint_fp, map_location=lambda storage, loc: storage)['state_dict']
model = SynergyNet(args)
model_dict = model.state_dict()
# load BFM_UV mapping and kept indicies and deleted triangles
uv_vert=np.load('3dmm_data/BFM_UV.npy')
coord_u = (uv_vert[:,1]*255.0).astype(np.int32)
coord_v = (uv_vert[:,0]*255.0).astype(np.int32)
keep_ind = np.load('3dmm_data/keptInd.npy')
tri_deletion = np.load('3dmm_data/deletedTri.npy')
# because the model is trained by multiple gpus, prefix 'module' should be removed
for k in checkpoint.keys():
model_dict[k.replace('module.', '')] = checkpoint[k]
model.load_state_dict(model_dict, strict=False)
model = model.cuda()
model.eval()
# face detector
face_boxes = FaceBoxes()
# preparation
transform = transforms.Compose([ToTensor(), Normalize(mean=127.5, std=128)])
if osp.isdir(args.files):
if not args.files[-1] == '/':
args.files = args.files + '/'
if not args.png:
files = sorted(glob.glob(args.files+'*.jpg'))
else:
files = sorted(glob.glob(args.files+'*.png'))
else:
files = [args.files]
for img_fp in files:
print("Process the image: ", img_fp)
img_ori = cv2.imread(img_fp)
# crop faces
rect = [0,0,256,256,1.0] # pre-cropped faces
# storage
vertices_lst = []
roi_box = rect
img = crop_img(img_ori, roi_box)
img = cv2.resize(img, dsize=(IMG_SIZE, IMG_SIZE), interpolation=cv2.INTER_LINEAR)
input = transform(img).unsqueeze(0)
with torch.no_grad():
input = input.cuda()
param = model.forward_test(input)
param = param.squeeze().cpu().numpy().flatten().astype(np.float32)
# dense pts
vertices = predict_denseVert(param, roi_box, transform=True)
vertices = vertices[:,keep_ind]
vertices_lst.append(vertices)
# textured obj file output
if not osp.exists(f'inference_output/obj/'):
os.makedirs(f'inference_output/obj/')
if not osp.exists(f'inference_output/rendering_overlay/'):
os.makedirs(f'inference_output/rendering_overlay/')
name = img_fp.rsplit('/',1)[-1][:-11] # drop off the postfix
colors = cv2.imread(f'texture_data/uv_real/{name}_fake_B.png',-1)
colors = np.flip(colors,axis=0)
colors_uv = (colors[coord_u, coord_v,:])
wfp = f'inference_output/obj/{name}.obj'
write_obj_with_colors(wfp, vertices, tri_deletion, colors_uv[keep_ind,:].astype(np.float32))
tex = colors_uv[keep_ind,:].astype(np.float32)/255.0
render(img_ori, vertices_lst, alpha=0.6, wfp=f'inference_output/rendering_overlay/{name}.jpg', tex=tex, connectivity=tri_deletion-1)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--files', default='', help='path to a single image or path to a folder containing multiple images')
parser.add_argument("--png", action="store_true", help="if images are with .png extension")
parser.add_argument('--img_size', default=120, type=int)
parser.add_argument('-b', '--batch-size', default=1, type=int)
args = parser.parse_args()
main(args)