-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathgenerate.py
73 lines (61 loc) · 2.34 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
if __name__ == '__main__':
from argparse import ArgumentParser
import os
import sys
import torch
script_dir = os.path.dirname(os.path.abspath(__file__))
code_model_dir = os.path.abspath(os.path.join(script_dir, 'model'))
code_utils_dir = os.path.join(code_model_dir, 'utils')
sys.path.extend([code_model_dir, code_utils_dir])
from utils import TxlSimpleSampler, load_vocab
parser = ArgumentParser()
parser.add_argument('model_dir', type=str, help='Directory with model')
parser.add_argument('--tx2', action='store_false', dest='tx1')
parser.add_argument('--out_dir', type=str, help='Output directory')
parser.add_argument('--cpu', action='store_false', dest='gpu')
parser.add_argument('--num', type=int, help='Number of samples to generate')
parser.add_argument('--mem_len', type=int, help='Max length of Transformer memory')
parser.add_argument('--gen_len', type=int, help='Length of generation')
parser.add_argument('--temp', type=float, help='Generation temperature')
parser.add_argument('--topk', type=int, help='Top-k sampling')
parser.set_defaults(
model_dir=None,
tx1=True,
out_dir='./',
gpu=True,
num=1,
mem_len=512,
gen_len=1024,
temp=0.95,
topk=32)
args = parser.parse_args()
model_fp = os.path.join(args.model_dir, 'model.pt')
vocab_fp = os.path.join(args.model_dir, 'vocab.txt')
if not os.path.isdir(args.out_dir):
os.makedirs(args.out_dir)
ext = '.tx1.txt' if args.tx1 else '.tx2.txt'
device = torch.device('cuda' if args.gpu else 'cpu')
# Load the best saved model.
with open(model_fp, 'rb') as f:
model = torch.load(f)
model.backward_compatible()
model = model.to(device)
# Make sure model uses vanilla softmax.
if model.sample_softmax > 0:
raise NotImplementedError()
if model.crit.n_clusters != 0:
raise NotImplementedError()
# Load the vocab.
idx2sym, _, _ = load_vocab(vocab_fp)
# Generate.
for i in range(args.num):
out_fn = str(i) + ext
out_fp = os.path.join(args.out_dir, out_fn)
sampler = TxlSimpleSampler(model, device, mem_len=args.mem_len)
seq = [0]
for _ in range(args.gen_len):
token, _ = sampler.sample_next_token_updating_mem(
seq[-1], temp=args.temp, topk=args.topk)
seq.append(token)
with open(out_fp, 'w') as f:
f.write('\n'.join(idx2sym[t] for t in seq[1:]))