-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworker.c
376 lines (267 loc) · 8.18 KB
/
worker.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/*
* Author: Chris Wailes <[email protected]>
* Project: Parallel Linear Program Solver
* Date: 2012/01/06
* Description: Code for the pthread workers.
*/
#define _GNU_SOURCE
// Standard Incldues
#include <math.h>
#include <pthread.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
// Project Includes
#include "bloom.h"
#include "dictionary.h"
#include "work_queue.h"
#include "worker.h"
// Macros
#define WORKER_LOCK(worker) (pthread_mutex_lock(&((worker)->lock)))
#define WORKER_UNLOCK(worker) (pthread_mutex_unlock(&((worker)->lock)))
// Forward Declarations
int intcmp(const void* a, const void* b);
// Global Variables
extern config_t cfg;
static worker_t* workers;
static pthread_mutex_t filter_lock;
static bloom_t dict_filter;
static pthread_mutex_t barrier_lock;
static pthread_cond_t barrier;
static volatile uint barrier_count;
static pthread_mutex_t final_lock;
static pthread_cond_t final_cv;
static dict_t* volatile final_dict;
// Functions
void* worker_body(void* arg) {
unsigned char* key;
dict_t* dict;
elr_t* el_pair;
work_unit_t* wu, * new_wu;
worker_t* self = (worker_t*) arg;
//printf("Worker %ld: On CPU %d.\n", self->id, sched_getcpu());
while (TRUE) {
/*
* Wait for a simplex round to start.
*/
pthread_mutex_lock(&barrier_lock);
printf("Worker %ld: Before barrier.\n", self->id);
++barrier_count;
pthread_cond_wait(&barrier, &barrier_lock);
--barrier_count;
printf("Worker %ld: After barrier.\n", self->id);
pthread_mutex_unlock(&barrier_lock);
// Try to find the final dictionary.
while (final_dict == NULL) {
/*
* Obtain a work unit.
*/
printf("Worker %ld: Obtaining work unit.\n", self->id);
WORKER_LOCK(self);
if (self->work.size > 0) {
printf("Worker %ld: Taking work from local queue.\n", self->id);
// Check our local work queue.
wu = work_queue_unshift(&self->work);
} else {
printf("Worker %ld: Stealing work.\n", self->id);
// Nothing in local queue; time to steal.
wu = worker_steal(self);
}
WORKER_UNLOCK(self);
printf("Worker %ld: Got work unit.\n", self->id);
// Allocate space for they key if this is our first work unit.
if (key == NULL) {
key = calloc(wu->dict->num_cons, sizeof(int));
}
/*
* Process work unit.
*/
while ((el_pair = list_pop(&wu->elp)) != NULL) {
// Get a clone of this work unit's dictionary.
dict = dict_clone(wu->dict);
// Perform the pivot.
dict = dict_pivot(dict, el_pair->entering, el_pair->leaving, el_pair->new_rest, el_pair->adj_amount);
// Check for the final dictionary.
if (dict_is_final(dict)) {
printf("Worker %ld: Found a final dictionary.\n", self->id);
pthread_mutex_lock(&final_lock);
if (final_dict == NULL) {
printf("Worker %ld: Assigning final dictionary.\n", self->id);
final_dict = dict;
}
pthread_cond_signal(&final_cv);
pthread_mutex_unlock(&final_lock);
// Break out of the work unit handeling loop.
break;
}
// Make the key.
memcpy(key, dict->row_labels, dict->num_cons * sizeof(int));
qsort(key, dict->num_cons, sizeof(int), intcmp);
// Check to see if we've visited this vertex before.
if (bloom_check(&dict_filter, key, dict->num_cons * sizeof(int))) {
/*
* This vertex has been seen before. Free the
* dictionary and move on.
*/
dict_free(dict);
} else {
/*
* This vertex hasn't been seen before. Generate a
* work unit for it and add it to our queue.
*/
bloom_add(&dict_filter, key, dict->num_cons * sizeof(int));
new_wu = build_work_unit(dict);
WORKER_LOCK(self);
work_queue_add(&self->work, new_wu);
WORKER_UNLOCK(self);
}
}
work_unit_free(wu);
}
// Clean up any data left over from this simplex round.
work_queue_empty(&self->work);
free(key);
key = NULL;
}
return NULL;
}
inline void worker_init(worker_t* worker, long id) {
worker->id = id;
pthread_mutex_init(&worker->lock, NULL);
work_queue_init(&worker->work);
}
work_unit_t* worker_steal(worker_t* self) {
uint index;
work_unit_t* wu = NULL;
while (wu == NULL) {
for (index = cfg.ncpus; index-- > 0;) {
if (index != self->id && workers[index].work.size > 0) {
WORKER_LOCK(&workers[index]);
if (workers[index].work.size > 0) {
wu = work_queue_pop(&workers[index].work);
WORKER_UNLOCK(&workers[index]);
break;
} else {
WORKER_UNLOCK(&workers[index]);
}
}
}
}
return wu;
}
void workers_setup(void) {
long ncpus;
pthread_attr_t worker_attrs;
cpu_set_t cpus;
/*
* Data Structure Initialization
*/
bloom_init(&dict_filter, BLOOM_SIZE_MEDIUM, 3, bernstein_hash, sax_hash, sdbm_hash);
/*
* Mutex and CV Initialization
*/
pthread_mutex_init(&filter_lock, NULL);
pthread_mutex_init(&barrier_lock, NULL);
pthread_cond_init(&barrier, NULL);
pthread_mutex_init(&final_lock, NULL);
pthread_cond_init(&final_cv, NULL);
/*
* Worker Initialization
*/
ncpus = cfg.ncpus;
workers = calloc(ncpus, sizeof(worker_t));
// Initialize the thread attributes.
pthread_attr_init(&worker_attrs);
while (ncpus-- > 0) {
/*
* Zero out the CPU set and then add a single CPU.
*/
CPU_ZERO(&cpus);
CPU_SET(ncpus, &cpus);
/*
* Set the thread to be bound the that single CPU.
*/
pthread_attr_setaffinity_np(&worker_attrs, sizeof(cpu_set_t), &cpus);
/*
* Create the thread and set it to work.
*/
worker_init(&workers[ncpus], ncpus);
pthread_create(&workers[ncpus].thread, &worker_attrs, worker_body, &workers[ncpus]);
}
pthread_attr_destroy(&worker_attrs);
}
dict_t* workers_manager(dict_t* dict) {
work_unit_t* wu;
printf("Manager: Before spinlock.\n");
// Make sure all workers are at the barrier.
// FIXME Spinlock
while (barrier_count != cfg.ncpus) {}
printf("Manager: After spinlock.\n");
// Reset data.
final_dict = NULL;
bloom_reset(&dict_filter);
printf("Manager: After bloom reset.\n");
// Set up initial work.
wu = build_work_unit(dict);
work_queue_add(&(workers[0].work), wu);
printf("Manager: After initial work unit placement.\n");
// Wake the workers up.
pthread_mutex_lock(&final_lock);
pthread_cond_broadcast(&barrier);
printf("Manager: After broadcasting to the barrier.\n");
// Wait for a worker to find the final dictionary.
pthread_cond_wait(&final_cv, &final_lock);
// Unlock the final lock for use next round.
pthread_mutex_unlock(&final_lock);
printf("Manager: About to return.\n");
return final_dict;
}
work_unit_t* build_work_unit(dict_t* dict) {
uint col_index, row_index;
double max_con;
clr_t* clrs;
elr_t flip_elr;
elr_t* elr;
work_unit_t* wu;
clrs = calloc(dict->num_cons, sizeof(clr_t));
wu = malloc(sizeof(work_unit_t));
wu->dict = dict;
list_init(&wu->elp);
// Test the dictionary for flipping.
dict_select_entering_and_leaving(dict, &flip_elr);
if (flip_elr.flip) {
dict_flip_rest(dict, flip_elr.entering, flip_elr.new_rest);
}
// Build the actual work unit.
for (col_index = dict->num_vars; col_index-- > 0;) {
if (dict_var_can_enter(dict, col_index)) {
max_con = INFINITY;
// Calculating all 'can leave' results.
for (row_index = dict->num_cons; row_index-- > 0;) {
dict_var_can_leave(dict, &clrs[row_index], col_index, row_index);
// Find the max constraint value.
if (clrs[row_index].viable && clrs[row_index].constraint < max_con) {
max_con = clrs[row_index].constraint;
}
}
// Build entering and leaving pairs.
for (row_index = dict->num_cons; row_index-- > 0;) {
if (clrs[row_index].viable && clrs[row_index].constraint == max_con) {
elr = malloc(sizeof(elr_t));
elr->entering = col_index;
elr->leaving = row_index;
elr->adj_amount = dict->col_rests[col_index] == UPPER ? -max_con : max_con;
elr->new_rest = clrs[row_index].new_rest;
list_shift(&wu->elp, elr);
}
}
}
}
free(clrs);
return wu;
}
int intcmp(const void* a, const void* b) {
return *(int*)a - *(int*)b;
}