-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathhw08_solution.py
56 lines (39 loc) · 1.13 KB
/
hw08_solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from __future__ import print_function
import numpy as np
from scipy import optimize
# ========== HW08 SOLUTION [Python2/3] ========== #
# ========== 1 ========== #
def func(x):
h, w, d = x
return 2.0 * (w*h + d*h + 2*w*d)
def f_con(x):
h, w, d = x
g = 2.0 - h*d*w
return -g
bounds = ((0, None),) * 3
x0 = np.array([1.0] * 3)
res = optimize.fmin_slsqp(func, x0, f_ieqcons=f_con, bounds=bounds, full_output=True)
H, W, D = res[0]
print('H: {}\nW: {}\nD: {}'.format(H, W, D))
print('SA:', res[1])
print('V:', H*W*D)
# ========== 2 ========== #
def woods(x):
# Woods function
a = 100.0 * ((x[1] - (x[0]**2))**2)
b = (1.0 - x[0])**2
c = 90.0 * ((x[3] - (x[2]**2))**2)
d = (1.0 - x[2])**2
e = 10.0 * ((x[1] + x[3] - 2.0)**2)
f = 0.1 * ((x[1] - x[3])**2)
return a + b + c + d + e + f
bounds = ((-10.0, 10.0),) * 4
# option 1: differential evolution (preferred)
res = optimize.differential_evolution(woods, bounds, maxiter=1000)
print(res.x)
print(res.fun)
# option 2: SLSQP
x0 = np.zeros(4)
res = optimize.fmin_slsqp(woods, x0, bounds=bounds, full_output=True)
print(res[0])
print(res[1])