-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvit_seg_modeling_resnet_skip.py
164 lines (128 loc) · 6.18 KB
/
vit_seg_modeling_resnet_skip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import math
from os.path import join as pjoin
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
def np2th(weights, conv=False):
"""Possibly convert HWIO to OIHW."""
if conv:
weights = weights.transpose([3, 2, 0, 1])
return torch.from_numpy(weights)
class StdConv2d(nn.Conv2d):
def forward(self, x):
w = self.weight
v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False)
w = (w - m) / torch.sqrt(v + 1e-5)
return F.conv2d(x, w, self.bias, self.stride, self.padding,
self.dilation, self.groups)
def conv3x3(cin, cout, stride=1, groups=1, bias=False):
return StdConv2d(cin, cout, kernel_size=3, stride=stride,
padding=1, bias=bias, groups=groups)
def conv1x1(cin, cout, stride=1, bias=False):
return StdConv2d(cin, cout, kernel_size=1, stride=stride,
padding=0, bias=bias)
class PreActBottleneck(nn.Module):
"""Pre-activation (v2) bottleneck block.
"""
def __init__(self, cin, cout=None, cmid=None, stride=1):
super().__init__()
cout = cout or cin
cmid = cmid or cout // 4
self.gn1 = nn.GroupNorm(32, cmid, eps=1e-6)
self.conv1 = conv1x1(cin, cmid, bias=False)
self.gn2 = nn.GroupNorm(32, cmid, eps=1e-6)
self.conv2 = conv3x3(cmid, cmid, stride, bias=False) # Original code has it on conv1!!
self.gn3 = nn.GroupNorm(32, cout, eps=1e-6)
self.conv3 = conv1x1(cmid, cout, bias=False)
self.relu = nn.ReLU(inplace=True)
if (stride != 1 or cin != cout):
# Projection also with pre-activation according to paper.
self.downsample = conv1x1(cin, cout, stride, bias=False)
self.gn_proj = nn.GroupNorm(cout, cout)
def forward(self, x):
# Residual branch
residual = x
if hasattr(self, 'downsample'):
residual = self.downsample(x)
residual = self.gn_proj(residual)
# Unit's branch
y = self.relu(self.gn1(self.conv1(x)))
y = self.relu(self.gn2(self.conv2(y)))
y = self.gn3(self.conv3(y))
y = self.relu(residual + y)
return y
def load_from(self, weights, n_block, n_unit):
conv1_weight = np2th(weights[pjoin(n_block, n_unit, "conv1/kernel")], conv=True)
conv2_weight = np2th(weights[pjoin(n_block, n_unit, "conv2/kernel")], conv=True)
conv3_weight = np2th(weights[pjoin(n_block, n_unit, "conv3/kernel")], conv=True)
gn1_weight = np2th(weights[pjoin(n_block, n_unit, "gn1/scale")])
gn1_bias = np2th(weights[pjoin(n_block, n_unit, "gn1/bias")])
gn2_weight = np2th(weights[pjoin(n_block, n_unit, "gn2/scale")])
gn2_bias = np2th(weights[pjoin(n_block, n_unit, "gn2/bias")])
gn3_weight = np2th(weights[pjoin(n_block, n_unit, "gn3/scale")])
gn3_bias = np2th(weights[pjoin(n_block, n_unit, "gn3/bias")])
self.conv1.weight.copy_(conv1_weight)
self.conv2.weight.copy_(conv2_weight)
self.conv3.weight.copy_(conv3_weight)
self.gn1.weight.copy_(gn1_weight.view(-1))
self.gn1.bias.copy_(gn1_bias.view(-1))
self.gn2.weight.copy_(gn2_weight.view(-1))
self.gn2.bias.copy_(gn2_bias.view(-1))
self.gn3.weight.copy_(gn3_weight.view(-1))
self.gn3.bias.copy_(gn3_bias.view(-1))
if hasattr(self, 'downsample'):
proj_conv_weight = np2th(weights[pjoin(n_block, n_unit, "conv_proj/kernel")], conv=True)
proj_gn_weight = np2th(weights[pjoin(n_block, n_unit, "gn_proj/scale")])
proj_gn_bias = np2th(weights[pjoin(n_block, n_unit, "gn_proj/bias")])
self.downsample.weight.copy_(proj_conv_weight)
self.gn_proj.weight.copy_(proj_gn_weight.view(-1))
self.gn_proj.bias.copy_(proj_gn_bias.view(-1))
class ResNetV2(nn.Module):
"""Implementation of Pre-activation (v2) ResNet mode."""
def __init__(self, block_units, width_factor):
super().__init__()
width = int(64 * width_factor)
self.width = width
self.root = nn.Sequential(OrderedDict([
('conv', StdConv2d(3, width, kernel_size=7, stride=2, bias=False, padding=3)),
('gn', nn.GroupNorm(32, width, eps=1e-6)),
('relu', nn.ReLU(inplace=True)),
# ('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=0))
]))
self.body = nn.Sequential(OrderedDict([
('block1', nn.Sequential(OrderedDict(
[('unit1', PreActBottleneck(cin=width, cout=width * 4, cmid=width))] +
[(f'unit{i:d}', PreActBottleneck(cin=width * 4, cout=width * 4, cmid=width)) for i in
range(2, block_units[0] + 1)],
))),
('block2', nn.Sequential(OrderedDict(
[('unit1', PreActBottleneck(cin=width * 4, cout=width * 8, cmid=width * 2, stride=2))] +
[(f'unit{i:d}', PreActBottleneck(cin=width * 8, cout=width * 8, cmid=width * 2)) for i in
range(2, block_units[1] + 1)],
))),
('block3', nn.Sequential(OrderedDict(
[('unit1', PreActBottleneck(cin=width * 8, cout=width * 16, cmid=width * 4, stride=2))] +
[(f'unit{i:d}', PreActBottleneck(cin=width * 16, cout=width * 16, cmid=width * 4)) for i in
range(2, block_units[2] + 1)],
))),
]))
def forward(self, x):
features = []
b, c, in_size, _ = x.size()
x = self.root(x)
features.append(x)
x = nn.MaxPool2d(kernel_size=3, stride=2, padding=0)(x)
for i in range(len(self.body) - 1):
x = self.body[i](x)
right_size = int(in_size / 4 / (i + 1))
if x.size()[2] != right_size:
pad = right_size - x.size()[2]
assert pad < 3 and pad > 0, "x {} should {}".format(x.size(), right_size)
feat = torch.zeros((b, x.size()[1], right_size, right_size), device=x.device)
feat[:, :, 0:x.size()[2], 0:x.size()[3]] = x[:]
else:
feat = x
features.append(feat)
x = self.body[-1](x)
return x, features[::-1]