-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
154 lines (120 loc) · 5.56 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import cv2
import torch
from torch.utils import data
from torchvision import transforms
import numpy as np
import random
random.seed(10)
class ImageDataTrain(data.Dataset):
def __init__(self, rgbd_image_root, rgbd_depth_root, rgbd_gt_root, image_size):
self.image_size = image_size
# load rgbd inputs
self.rgbd_images = [os.path.join(rgbd_image_root, image) for image in os.listdir(rgbd_image_root)]
self.rgbd_depths = [os.path.join(rgbd_depth_root, depth) for depth in os.listdir(rgbd_depth_root)]
self.rgbd_gts = [os.path.join(rgbd_gt_root, gt) for gt in os.listdir(rgbd_gt_root)]
self.rgbd_images = sorted(self.rgbd_images)
self.rgbd_depths = sorted(self.rgbd_depths)
self.rgbd_gts = sorted(self.rgbd_gts)
self.sal_rgbd_num = len(self.rgbd_images)
def __getitem__(self, item):
# sal data loading
rgbd_image_name = self.rgbd_images[item]
rgbd_depth_name = self.rgbd_depths[item]
rgbd_gt_name = self.rgbd_gts[item]
rgbd_sal_image = load_image(rgbd_image_name, self.image_size)
rgbd_sal_depth = load_image(rgbd_depth_name, self.image_size)
rgbd_sal_label = load_sal_label(rgbd_gt_name, self.image_size)
rgbd_sal_image, rgbd_sal_depth, rgbd_sal_label = \
cv_random_flip(rgbd_sal_image, rgbd_sal_depth, rgbd_sal_label)
rgbd_sal_image = torch.Tensor(rgbd_sal_image)
rgbd_sal_depth = torch.Tensor(rgbd_sal_depth)
rgbd_sal_label = torch.Tensor(rgbd_sal_label)
sample = {'rgbd_image': rgbd_sal_image, 'rgbd_depth': rgbd_sal_depth, 'rgbd_label': rgbd_sal_label}
return sample
def __len__(self):
return self.sal_rgbd_num
class ImageDataTest(data.Dataset):
def __init__(self, image_root, depth_root, test_size):
self.image_root = image_root
self.depth_root = depth_root
self.test_size = test_size
self.images = [os.path.join(self.image_root, image) for image in os.listdir(self.image_root)]
self.depths = [os.path.join(self.depth_root, depth) for depth in os.listdir(self.depth_root)]
self.images = sorted(self.images)
self.depths = sorted(self.depths)
self.image_num = len(self.images)
def __getitem__(self, item):
image, im_size = load_image_test(self.images[item], self.test_size)
depth, de_size = load_image_test(self.depths[item], self.test_size)
depth = torch.Tensor(depth)
image = torch.Tensor(image)
return {'image': image, 'depth': depth, 'name': os.path.split(self.images[item])[-1], 'size': im_size}
def __len__(self):
return self.image_num
def get_loader(config, mode='train', pin=True):
shuffle = False
if mode == 'train':
shuffle = True
dataset = ImageDataTrain(config.rgbd_image_root, config.rgbd_depth_root, config.rgbd_gt_root, config.image_size)
data_loader = data.DataLoader(dataset=dataset, batch_size=config.batch_size, shuffle=shuffle,
num_workers=config.num_thread, pin_memory=pin)
else:
dataset = ImageDataTest(config.rgbd_image_root, config.rgbd_depth_root, config.test_size)
data_loader = data.DataLoader(dataset=dataset, batch_size=1, shuffle=shuffle,
num_workers=0, pin_memory=pin)
return data_loader
def load_image(path, img_size=None):
if not os.path.exists(path):
print('File {} not exists'.format(path))
im = cv2.imread(path)
in_ = np.array(im, dtype=np.float32)
in_ -= np.array((104.00699, 116.66877, 122.67892))
if img_size:
in_ = cv2.resize(in_, dsize=(img_size, img_size), interpolation=cv2.INTER_LINEAR)
in_ = in_.transpose((2, 0, 1))
return in_
def load_image_test(path, img_size=None):
if not os.path.exists(path):
print('File {} not exists'.format(path))
im = cv2.imread(path)
in_ = np.array(im, dtype=np.float32)
im_size = tuple(in_.shape[:2])
in_ -= np.array((104.00699, 116.66877, 122.67892))
if img_size:
in_ = cv2.resize(in_, dsize=(img_size, img_size), interpolation=cv2.INTER_LINEAR)
in_ = in_.transpose((2, 0, 1))
return in_, im_size
def load_sal_label(path, img_size=None):
if not os.path.exists(path):
print('File {} not exists'.format(path))
im = cv2.imread(path, cv2.IMREAD_GRAYSCALE) # bgr mode
label = np.array(im, dtype=np.float32)
if img_size:
label = cv2.resize(label, dsize=(img_size, img_size), interpolation=cv2.INTER_LINEAR)
label = label / 255.
label = label[np.newaxis, ...]
return label
def load_edge_label(path, image_size):
if not os.path.exists(path):
print('File {} not exists'.format(path))
im = cv2.imread(path, cv2.IMREAD_GRAYSCALE) # bgr mode
label = np.array(im, dtype=np.float32)
label = cv2.resize(label, (image_size, image_size))
label = label / 255.0
label = label[np.newaxis, ...]
return label
def cv_random_flip(img, depth, label):
flip_flag = random.randint(0, 1)
if flip_flag == 1:
img = img[:, :, ::-1].copy()
depth = depth[:, :, ::-1].copy()
label = label[:, :, ::-1].copy()
return img, depth, label
def cv_random_flip_rgb(img, edge, label):
flip_flag = random.randint(0, 1)
if flip_flag == 1:
img = img[:, :, ::-1].copy()
edge = edge[:, :, ::-1].copy()
label = label[:, :, ::-1].copy()
return img, edge, label