-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathresnet.py
107 lines (86 loc) · 3.4 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import torch.nn as nn
import torch
affine_par = True
k = 64
is_frozen = False
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, dilation_=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change
self.bn1 = nn.BatchNorm2d(planes, affine=affine_par)
padding = 1
if dilation_ == 2:
padding = 2
elif dilation_ == 4:
padding = 4
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change
padding=padding, bias=False, dilation=dilation_)
self.bn2 = nn.BatchNorm2d(planes, affine=affine_par)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4, affine=affine_par)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers):
self.inplanes = 64
super(ResNet, self).__init__()
# del self.fc
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64, affine=affine_par)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) # change
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation__=2)
def _make_layer(self, block, planes, blocks, stride=1, dilation__=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion or dilation__ == 2 or dilation__ == 4:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion, affine=affine_par),
)
layers = []
layers.append(block(self.inplanes, planes, stride, dilation_=dilation__, downsample=downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation_=dilation__))
return nn.Sequential(*layers)
def forward(self, x):
tmp_x = []
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
tmp_x.append(x)
x = self.maxpool(x)
x = self.layer1(x)
tmp_x.append(x)
x = self.layer2(x)
tmp_x.append(x)
x = self.layer3(x)
tmp_x.append(x)
x = self.layer4(x)
tmp_x.append(x)
return tmp_x
def resnet50():
model = ResNet(Bottleneck, [3, 4, 6, 3])
return model