-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathhigher_groups.hlean
455 lines (376 loc) · 17.9 KB
/
higher_groups.hlean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/-
Copyright (c) 2015 Ulrik Buchholtz, Egbert Rijke and Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz, Egbert Rijke, Floris van Doorn
Formalization of the higher groups paper
-/
import .homotopy.EM algebra.category.constructions.pullback
open eq is_conn pointed is_trunc trunc equiv is_equiv trunc_index susp nat algebra
prod.ops sigma sigma.ops category EM
namespace higher_group
set_option pp.binder_types true
universe variable u
/- Results not necessarily about higher groups which we repeat here, because they are mentioned in
the higher group paper -/
namespace hide
open pushout
definition connect_intro_pequiv {k : ℕ} {B : Type*} (A : Type*) (H : is_conn k B) :
ppmap B (connect k A) ≃* ppmap B A :=
is_conn.connect_intro_pequiv A H
definition is_conn_fun_prod_of_wedge (n m : ℕ) (A B : Type*)
[cA : is_conn n A] [cB : is_conn m B] : is_conn_fun (m + n) (@prod_of_wedge A B) :=
is_conn_fun_prod_of_wedge n m A B
definition is_trunc_ppi_of_is_conn (k n : ℕ) (X : Type*) (H : is_conn (k.-1) X)
(Y : X → Type*) (H3 : Πx, is_trunc (k + n) (Y x)) :
is_trunc n (Π*(x : X), Y x) :=
is_conn.is_trunc_ppi_of_is_conn _ (k.-2) H _ _ (le_of_eq (sub_one_add_plus_two_sub_one k n)⁻¹) _ H3
end hide
/- The k-groupal n-types.
We require that the carrier has a point (preserved by the equivalence) -/
structure GType (n k : ℕ) : Type := /- (n,k)GType, denoted here as [n;k]GType -/
(car : ptrunctype.{u} n)
(B : pconntype.{u} (k.-1)) /- this is Bᵏ -/
(e : car ≃* Ω[k] B)
structure InfGType (k : ℕ) : Type := /- (∞,k)GType, denoted here as [∞;k]GType -/
(car : pType.{u})
(B : pconntype.{u} (k.-1)) /- this is Bᵏ -/
(e : car ≃* Ω[k] B)
structure ωGType (n : ℕ) := /- (n,ω)GType, denoted here as [n;ω]GType -/
(B : Π(k : ℕ), (n+k)-Type*[k.-1])
(e : Π(k : ℕ), B k ≃* Ω (B (k+1)))
attribute InfGType.car GType.car [coercion]
variables {n k k' l : ℕ}
notation `[`:95 n:0 `; ` k `]GType`:0 := GType n k
notation `[∞; `:95 k:0 `]GType`:0 := InfGType k
notation `[`:95 n:0 `;ω]GType`:0 := ωGType n
open GType
open InfGType (renaming B→iB e→ie)
open ωGType (renaming B→oB e→oe)
/- some basic properties -/
lemma is_trunc_B' (G : [n;k]GType) : is_trunc (k+n) (B G) :=
begin
apply is_trunc_of_is_trunc_loopn,
exact is_trunc_equiv_closed _ (e G) _,
exact _
end
lemma is_trunc_B (G : [n;k]GType) : is_trunc (n+k) (B G) :=
transport (λm, is_trunc m (B G)) (add.comm k n) (is_trunc_B' G)
local attribute [instance] is_trunc_B
definition GType.sigma_char (n k : ℕ) :
GType.{u} n k ≃ Σ(B : pconntype.{u} (k.-1)), Σ(X : ptrunctype.{u} n), X ≃* Ω[k] B :=
begin
fapply equiv.MK,
{ intro G, exact ⟨B G, G, e G⟩ },
{ intro v, exact GType.mk v.2.1 v.1 v.2.2 },
{ intro v, induction v with v₁ v₂, induction v₂, reflexivity },
{ intro G, induction G, reflexivity },
end
definition GType_equiv (n k : ℕ) : [n;k]GType ≃ (n+k)-Type*[k.-1] :=
GType.sigma_char n k ⬝e
sigma_equiv_of_is_embedding_left_contr
ptruncconntype.to_pconntype
(is_embedding_ptruncconntype_to_pconntype (n+k) (k.-1))
begin
intro X,
apply is_trunc_equiv_closed_rev -2,
{ apply sigma_equiv_sigma_right, intro B',
refine _ ⬝e (ptrunctype_eq_equiv B' (ptrunctype.mk (Ω[k] X) !is_trunc_loopn_nat pt))⁻¹ᵉ,
assert lem : Π(A : n-Type*) (B : Type*) (H : is_trunc n B),
(A ≃* B) ≃ (A ≃* (ptrunctype.mk B H pt)),
{ intro A B'' H, induction B'', reflexivity },
apply lem },
exact _
end
begin
intro B' H, apply fiber.mk (ptruncconntype.mk B' (is_trunc_B (GType.mk H.1 B' H.2)) pt _),
induction B' with G' B' e', reflexivity
end
definition GType_equiv_pequiv {n k : ℕ} (G : [n;k]GType) : GType_equiv n k G ≃* B G :=
by reflexivity
definition GType_eq_equiv {n k : ℕ} (G H : [n;k]GType) : (G = H :> [n;k]GType) ≃ (B G ≃* B H) :=
eq_equiv_fn_eq (GType_equiv n k) _ _ ⬝e !ptruncconntype_eq_equiv
definition GType_eq {n k : ℕ} {G H : [n;k]GType} (e : B G ≃* B H) : G = H :=
(GType_eq_equiv G H)⁻¹ᵉ e
/- similar properties for [∞;k]GType -/
definition InfGType.sigma_char (k : ℕ) :
InfGType.{u} k ≃ Σ(B : pconntype.{u} (k.-1)), Σ(X : pType.{u}), X ≃* Ω[k] B :=
begin
fapply equiv.MK,
{ intro G, exact ⟨iB G, G, ie G⟩ },
{ intro v, exact InfGType.mk v.2.1 v.1 v.2.2 },
{ intro v, induction v with v₁ v₂, induction v₂, reflexivity },
{ intro G, induction G, reflexivity },
end
definition InfGType_equiv (k : ℕ) : [∞;k]GType ≃ Type*[k.-1] :=
InfGType.sigma_char k ⬝e
@sigma_equiv_of_is_contr_right _ _
(λX, is_trunc_equiv_closed_rev -2 (sigma_equiv_sigma_right (λB', !pType_eq_equiv⁻¹ᵉ)) _)
definition InfGType_equiv_pequiv {k : ℕ} (G : [∞;k]GType) : InfGType_equiv k G ≃* iB G :=
by reflexivity
definition InfGType_eq_equiv {k : ℕ} (G H : [∞;k]GType) : (G = H :> [∞;k]GType) ≃ (iB G ≃* iB H) :=
eq_equiv_fn_eq (InfGType_equiv k) _ _ ⬝e !pconntype_eq_equiv
definition InfGType_eq {k : ℕ} {G H : [∞;k]GType} (e : iB G ≃* iB H) : G = H :=
(InfGType_eq_equiv G H)⁻¹ᵉ e
/- alternative constructor for ωGType -/
definition ωGType.mk_le {n : ℕ} (k₀ : ℕ)
(C : Π⦃k : ℕ⦄, k₀ ≤ k → ((n+k)-Type*[k.-1] : Type.{u+1}))
(e : Π⦃k : ℕ⦄ (H : k₀ ≤ k), C H ≃* Ω (C (le.step H))) : ([n;ω]GType : Type.{u+1}) :=
begin
fconstructor,
{ apply rec_down_le _ k₀ C, intro n' D,
refine (ptruncconntype.mk (Ω D) _ pt _),
apply is_trunc_loop, apply is_trunc_ptruncconntype, apply is_conn_loop,
apply is_conn_ptruncconntype },
{ intro n', apply rec_down_le_univ, exact e, intro n D, reflexivity }
end
definition ωGType.mk_le_beta {n : ℕ} {k₀ : ℕ}
(C : Π⦃k : ℕ⦄, k₀ ≤ k → ((n+k)-Type*[k.-1] : Type.{u+1}))
(e : Π⦃k : ℕ⦄ (H : k₀ ≤ k), C H ≃* Ω (C (le.step H)))
(k : ℕ) (H : k₀ ≤ k) : oB (ωGType.mk_le k₀ C e) k ≃* C H :=
ptruncconntype_eq_equiv _ _ !rec_down_le_beta_ge
definition GType_hom (G H : [n;k]GType) : Type :=
B G →* B H
definition ωGType_hom (G H : [n;ω]GType) : Type* :=
pointed.MK
(Σ(f : Πn, oB G n →* oB H n), Πn, psquare (f n) (Ω→ (f (n+1))) (oe G n) (oe H n))
⟨λn, pconst (oB G n) (oB H n), λn, !phconst_square ⬝vp* !ap1_pconst⟩
/- Constructions on higher groups -/
definition Decat (G : [n+1;k]GType) : [n;k]GType :=
GType.mk (ptrunctype.mk (ptrunc n G) _ pt) (pconntype.mk (ptrunc (n + k) (B G)) _ pt)
abstract begin
refine ptrunc_pequiv_ptrunc n (e G) ⬝e* _,
symmetry, exact !loopn_ptrunc_pequiv_nat
end end
definition Disc (G : [n;k]GType) : [n+1;k]GType :=
GType.mk (ptrunctype.mk G (show is_trunc (n.+1) G, from _) pt) (B G) (e G)
definition Decat_adjoint_Disc (G : [n+1;k]GType) (H : [n;k]GType) :
ppmap (B (Decat G)) (B H) ≃* ppmap (B G) (B (Disc H)) :=
pmap_ptrunc_pequiv (n + k) (B G) (B H)
definition Decat_adjoint_Disc_natural {G G' : [n+1;k]GType} {H H' : [n;k]GType}
(g : B G' →* B G) (h : B H →* B H') :
psquare (Decat_adjoint_Disc G H)
(Decat_adjoint_Disc G' H')
(ppcompose_left h ∘* ppcompose_right (ptrunc_functor _ g))
(ppcompose_left h ∘* ppcompose_right g) :=
pmap_ptrunc_pequiv_natural (n + k) g h
definition Decat_Disc (G : [n;k]GType) : Decat (Disc G) = G :=
GType_eq !ptrunc_pequiv
definition InfDecat (n : ℕ) (G : [∞;k]GType) : [n;k]GType :=
GType.mk (ptrunctype.mk (ptrunc n G) _ pt) (pconntype.mk (ptrunc (n + k) (iB G)) _ pt)
abstract begin
refine ptrunc_pequiv_ptrunc n (ie G) ⬝e* _,
symmetry, exact !loopn_ptrunc_pequiv_nat
end end
definition InfDisc (n : ℕ) (G : [n;k]GType) : [∞;k]GType :=
InfGType.mk G (B G) (e G)
definition InfDecat_adjoint_InfDisc (G : [∞;k]GType) (H : [n;k]GType) :
ppmap (B (InfDecat n G)) (B H) ≃* ppmap (iB G) (iB (InfDisc n H)) :=
pmap_ptrunc_pequiv (n + k) (iB G) (B H)
definition InfDecat_adjoint_InfDisc_natural {G G' : [∞;k]GType} {H H' : [n;k]GType}
(g : iB G' →* iB G) (h : B H →* B H') :
psquare (InfDecat_adjoint_InfDisc G H)
(InfDecat_adjoint_InfDisc G' H')
(ppcompose_left h ∘* ppcompose_right (ptrunc_functor _ g))
(ppcompose_left h ∘* ppcompose_right g) :=
pmap_ptrunc_pequiv_natural (n + k) g h
definition InfDecat_InfDisc (G : [n;k]GType) : InfDecat n (InfDisc n G) = G :=
GType_eq !ptrunc_pequiv
definition Deloop (G : [n;k+1]GType) : [n+1;k]GType :=
have is_conn k (B G), from is_conn_pconntype (B G),
have is_trunc (n + (k + 1)) (B G), from is_trunc_B G,
have is_trunc ((n + 1) + k) (B G), from transport (λ(n : ℕ), is_trunc n _) (succ_add n k)⁻¹ this,
GType.mk (ptrunctype.mk (Ω[k] (B G)) !is_trunc_loopn_nat pt)
(pconntype.mk (B G) !is_conn_of_is_conn_succ pt)
(pequiv_of_equiv erfl idp)
definition Loop (G : [n+1;k]GType) : [n;k+1]GType :=
GType.mk (ptrunctype.mk (Ω G) !is_trunc_loop_nat pt)
(connconnect k (B G))
(loop_pequiv_loop (e G) ⬝e* (loopn_connect k (B G))⁻¹ᵉ*)
definition Deloop_adjoint_Loop (G : [n;k+1]GType) (H : [n+1;k]GType) :
ppmap (B (Deloop G)) (B H) ≃* ppmap (B G) (B (Loop H)) :=
(connect_intro_pequiv _ !is_conn_pconntype)⁻¹ᵉ*
definition Deloop_adjoint_Loop_natural {G G' : [n;k+1]GType} {H H' : [n+1;k]GType}
(g : B G' →* B G) (h : B H →* B H') :
psquare (Deloop_adjoint_Loop G H)
(Deloop_adjoint_Loop G' H')
(ppcompose_left h ∘* ppcompose_right g)
(ppcompose_left (connect_functor k h) ∘* ppcompose_right g) :=
(connect_intro_pequiv_natural g h _ _)⁻¹ʰ*
definition Loop_Deloop (G : [n;k+1]GType) : Loop (Deloop G) = G :=
GType_eq (connect_pequiv (is_conn_pconntype (B G)))
definition Forget (G : [n;k+1]GType) : [n;k]GType :=
have is_conn k (B G), from !is_conn_pconntype,
GType.mk G (pconntype.mk (Ω (B G)) !is_conn_loop pt)
abstract begin
refine e G ⬝e* !loopn_succ_in
end end
definition Stabilize (G : [n;k]GType) : [n;k+1]GType :=
have is_conn k (susp (B G)), from !is_conn_susp,
have Hconn : is_conn k (ptrunc (n + k + 1) (susp (B G))), from !is_conn_ptrunc,
GType.mk (ptrunctype.mk (ptrunc n (Ω[k+1] (susp (B G)))) _ pt)
(pconntype.mk (ptrunc (n+k+1) (susp (B G))) Hconn pt)
abstract begin
refine !loopn_ptrunc_pequiv⁻¹ᵉ* ⬝e* _,
apply loopn_pequiv_loopn,
exact ptrunc_change_index !of_nat_add_of_nat _
end end
definition Stabilize_pequiv {G H : [n;k]GType} (e : B G ≃* B H) :
B (Stabilize G) ≃* B (Stabilize H) :=
ptrunc_pequiv_ptrunc (n+k+1) (susp_pequiv e)
definition Stabilize_adjoint_Forget (G : [n;k]GType) (H : [n;k+1]GType) :
ppmap (B (Stabilize G)) (B H) ≃* ppmap (B G) (B (Forget H)) :=
have is_trunc (n + k + 1) (B H), from !is_trunc_B,
pmap_ptrunc_pequiv (n + k + 1) (⅀ (B G)) (B H) ⬝e* susp_adjoint_loop (B G) (B H)
definition Stabilize_adjoint_Forget_natural {G G' : [n;k]GType} {H H' : [n;k+1]GType}
(g : B G' →* B G) (h : B H →* B H') :
psquare (Stabilize_adjoint_Forget G H)
(Stabilize_adjoint_Forget G' H')
(ppcompose_left h ∘* ppcompose_right (ptrunc_functor (n+k+1) (⅀→ g)))
(ppcompose_left (Ω→ h) ∘* ppcompose_right g) :=
begin
have is_trunc (n + k + 1) (B H), from !is_trunc_B,
have is_trunc (n + k + 1) (B H'), from !is_trunc_B,
refine pmap_ptrunc_pequiv_natural (n+k+1) (⅀→ g) h ⬝h* _,
exact susp_adjoint_loop_natural_left g ⬝v* susp_adjoint_loop_natural_right h
end
definition Forget_Stabilize (H : k ≥ n + 2) (G : [n;k]GType) : B (Forget (Stabilize G)) ≃* B G :=
loop_ptrunc_pequiv _ _ ⬝e*
begin
cases k with k,
{ cases H },
{ have k ≥ succ n, from le_of_succ_le_succ H,
assert this : n + succ k ≤ 2 * k,
{ rewrite [two_mul, add_succ, -succ_add], exact nat.add_le_add_right this k },
exact freudenthal_pequiv this (B G) }
end⁻¹ᵉ* ⬝e*
ptrunc_pequiv (n + k) _
definition Stabilize_Forget (H : k ≥ n + 1) (G : [n;k+1]GType) : B (Stabilize (Forget G)) ≃* B G :=
begin
assert lem1 : n + succ k ≤ 2 * k,
{ rewrite [two_mul, add_succ, -succ_add], exact nat.add_le_add_right H k },
have is_conn k (B G), from !is_conn_pconntype,
have Π(G' : [n;k+1]GType), is_trunc (n + k + 1) (B G'), from is_trunc_B,
note z := is_conn_fun_loop_susp_counit (B G) (nat.le_refl (2 * k)),
refine ptrunc_pequiv_ptrunc_of_le (of_nat_le_of_nat lem1) (@(ptrunc_pequiv_ptrunc_of_is_conn_fun _ _) z) ⬝e*
!ptrunc_pequiv,
end
definition stabilization (H : k ≥ n + 2) : is_equiv (@Stabilize n k) :=
begin
fapply adjointify,
{ exact Forget },
{ intro G, apply GType_eq, exact Stabilize_Forget (le.trans !self_le_succ H) _ },
{ intro G, apply GType_eq, exact Forget_Stabilize H G }
end
/- an incomplete formalization of ω-Stabilization -/
definition ωForget (k : ℕ) (G : [n;ω]GType) : [n;k]GType :=
have is_trunc (n + k) (oB G k), from _,
have is_trunc n (Ω[k] (oB G k)), from !is_trunc_loopn_nat,
GType.mk (ptrunctype.mk (Ω[k] (oB G k)) _ pt) (oB G k) (pequiv_of_equiv erfl idp)
definition nStabilize (H : k ≤ l) (G : GType.{u} n k) : GType.{u} n l :=
begin
induction H with l H IH, exact G, exact Stabilize IH
end
definition nStabilize_pequiv (H H' : k ≤ l) {G G' : [n;k]GType}
(e : B G ≃* B G') : B (nStabilize H G) ≃* B (nStabilize H' G') :=
begin
induction H with l H IH,
{ exact e ⬝e* pequiv_ap (λH, B (nStabilize H G')) (is_prop.elim (le.refl k) H') },
cases H' with l H'',
{ exfalso, exact not_succ_le_self H },
exact Stabilize_pequiv (IH H'')
end
definition nStabilize_pequiv_of_eq (H : k ≤ l) (p : k = l) (G : [n;k]GType) :
B (nStabilize H G) ≃* B G :=
begin induction p, exact pequiv_ap (λH, B (nStabilize H G)) (is_prop.elim H (le.refl k)) end
definition ωStabilize_of_le (H : k ≥ n + 2) (G : [n;k]GType) : [n;ω]GType :=
ωGType.mk_le k (λl H', GType_equiv n l (nStabilize H' G))
(λl H', (Forget_Stabilize (le.trans H H') (nStabilize H' G))⁻¹ᵉ*)
definition ωStabilize_of_le_beta (H : k ≥ n + 2) (G : [n;k]GType) (H' : l ≥ k) :
oB (ωStabilize_of_le H G) l ≃* GType_equiv n l (nStabilize H' G) :=
ptruncconntype_eq_equiv _ _ !rec_down_le_beta_ge
definition ωStabilize_of_le_pequiv (H : k ≥ n + 2) (H' : k' ≥ n + 2) {G : [n;k]GType}
{G' : [n;k']GType} (e : B G ≃* B G') (l : ℕ) (Hl : l ≥ k) (Hl' : l ≥ k') (p : k = k') :
oB (ωStabilize_of_le H G) l ≃* oB (ωStabilize_of_le H' G') l :=
begin
refine ωStabilize_of_le_beta H G Hl ⬝e* _ ⬝e* (ωStabilize_of_le_beta H' G' Hl')⁻¹ᵉ*,
induction p,
exact nStabilize_pequiv _ _ e
end
definition ωForget_ωStabilize_of_le (H : k ≥ n + 2) (G : [n;k]GType) :
B (ωForget k (ωStabilize_of_le H G)) ≃* B G :=
ωStabilize_of_le_beta H _ (le.refl k)
definition ωStabilize (G : [n;k]GType) : [n;ω]GType :=
ωStabilize_of_le !le_max_left (nStabilize !le_max_right G)
definition ωForget_ωStabilize (H : k ≥ n + 2) (G : [n;k]GType) :
B (ωForget k (ωStabilize G)) ≃* B G :=
begin
refine _ ⬝e* ωForget_ωStabilize_of_le H G,
esimp [ωForget, ωStabilize],
have H' : max (n + 2) k = k, from max_eq_right H,
exact ωStabilize_of_le_pequiv !le_max_left H (nStabilize_pequiv_of_eq _ H'⁻¹ _)
k (le_of_eq H') (le.refl k) H'
end
/-
definition ωStabilize_adjoint_ωForget (G : [n;k]GType) (H : [n;ω]GType) :
ωGType_hom (ωStabilize G) H ≃* ppmap (B G) (B (ωForget k H)) :=
sorry
definition ωStabilize_ωForget (G : [n;ω]GType) (l : ℕ) :
oB (ωStabilize (ωForget k G)) l ≃* oB G l :=
begin
exact sorry
end
definition ωstabilization (H : k ≥ n + 2) : is_equiv (@ωStabilize n k) :=
begin
apply adjointify _ (ωForget k),
{ intro G', exact sorry },
{ intro G, apply GType_eq, exact ωForget_ωStabilize H G }
end
-/
definition is_trunc_GType_hom (G H : [n;k]GType) : is_trunc n (GType_hom G H) :=
is_trunc_pmap_of_is_conn _ (k.-2) _ _ (k + n) _ (le_of_eq (sub_one_add_plus_two_sub_one k n)⁻¹)
(is_trunc_B' H)
definition is_set_GType_hom (G H : [0;k]GType) : is_set (GType_hom G H) :=
is_trunc_GType_hom G H
definition is_trunc_GType (n k : ℕ) : is_trunc (n + 1) [n;k]GType :=
begin
apply @is_trunc_equiv_closed_rev _ _ (n + 1) (GType_equiv n k),
apply is_trunc_succ_intro, intros X Y,
apply @is_trunc_equiv_closed_rev _ _ _ (ptruncconntype_eq_equiv X Y),
apply @is_trunc_equiv_closed_rev _ _ _ (pequiv.sigma_char_pmap X Y),
apply @is_trunc_subtype (X →* Y) (λ f, trunctype.mk' -1 (is_equiv f)),
exact is_trunc_GType_hom ((GType_equiv n k)⁻¹ᵉ X) ((GType_equiv n k)⁻¹ᵉ Y)
end
local attribute [instance] is_set_GType_hom
definition cGType [constructor] (k : ℕ) : Precategory :=
pb_Precategory (cptruncconntype' (k.-1))
(GType_equiv 0 k ⬝e ptruncconntype_equiv (ap of_nat (zero_add k)) idp ⬝e
(ptruncconntype'_equiv_ptruncconntype (k.-1))⁻¹ᵉ)
example (k : ℕ) : Precategory.carrier (cGType k) = [0;k]GType := by reflexivity
example (k : ℕ) (G H : cGType k) : (G ⟶ H) = (B G →* B H) := by reflexivity
definition cGType_equivalence_cType [constructor] (k : ℕ) : cGType k ≃c cType*[k.-1] :=
!pb_Precategory_equivalence_of_equiv
definition cGType_equivalence_Grp [constructor] : cGType.{u} 1 ≃c Grp.{u} :=
equivalence.trans !pb_Precategory_equivalence_of_equiv
(equivalence.trans (equivalence.symm Grp_equivalence_cptruncconntype')
proof equivalence.refl _ qed)
definition cGType_equivalence_AbGrp [constructor] (k : ℕ) : cGType.{u} (k+2) ≃c AbGrp.{u} :=
equivalence.trans !pb_Precategory_equivalence_of_equiv
(equivalence.trans (equivalence.symm (AbGrp_equivalence_cptruncconntype' k))
proof equivalence.refl _ qed)
/-
print axioms GType_equiv
print axioms InfGType_equiv
print axioms Decat_adjoint_Disc
print axioms Decat_adjoint_Disc_natural
print axioms InfDecat_adjoint_InfDisc
print axioms InfDecat_adjoint_InfDisc_natural
print axioms Deloop_adjoint_Loop
print axioms Deloop_adjoint_Loop_natural
print axioms Stabilize_adjoint_Forget
print axioms Stabilize_adjoint_Forget_natural
print axioms stabilization
print axioms is_trunc_GType
print axioms cGType_equivalence_Grp
print axioms cGType_equivalence_AbGrp
-/
end higher_group