-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscore.py
130 lines (97 loc) · 3.72 KB
/
score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import argparse
import csv
import logging
import multiprocessing
import numpy as np
import os
import sys
from datetime import datetime
from rdkit import RDLogger
from tqdm import tqdm
from utils.chem_utils import canonicalize_smiles
from utils import misc
global G_predictions
def get_score_parser():
parser = argparse.ArgumentParser("score.py", conflict_handler="resolve")
parser.add_argument("--model_name", help="model name", type=str, default="")
parser.add_argument("--log_file", help="log file", type=str, default="")
parser.add_argument("--test_file", help="test SMILES file", type=str, default="")
parser.add_argument("--prediction_file", help="prediction file", type=str, default="")
parser.add_argument("--num_cores", help="number of cpu cores to use", type=int, default=4)
return parser
def csv2kv(_args):
prediction_row, n_best = _args
k = canonicalize_smiles(prediction_row["prod_smi"])
v = []
for i in range(n_best):
try:
prediction = prediction_row[f"cand_precursor_{i + 1}"]
except KeyError:
break
if not prediction or prediction == "9999": # padding
break
prediction = canonicalize_smiles(prediction)
v.append(prediction)
return k, v
def match_results(_args):
global G_predictions
test_row, n_best = _args
predictions = G_predictions
accuracy = np.zeros(n_best, dtype=np.float32)
gt, reagent, prod = test_row["rxn_smiles"].strip().split(">")
k = canonicalize_smiles(prod)
if k not in predictions:
logging.info(f"Product {prod} not found in predictions (after canonicalization), skipping")
return accuracy
gt = canonicalize_smiles(gt)
for j, prediction in enumerate(predictions[k]):
if prediction == gt:
accuracy[j:] = 1.0
break
return accuracy
def score_main(args):
"""
Adapted from Molecular Transformer
Parallelized (210826 by ztu)
"""
global G_predictions
n_best = 50
logging.info(f"Scoring predictions with model: {args.model_name}")
# Load predictions and transform into a huge table {cano_prod: [cano_cand, ...]}
logging.info(f"Loading predictions from {args.prediction_file}")
predictions = {}
p = multiprocessing.Pool(args.num_cores)
with open(args.prediction_file, "r") as prediction_csv:
prediction_reader = csv.DictReader(prediction_csv)
for result in tqdm(p.imap(csv2kv,
((prediction_row, n_best) for prediction_row in prediction_reader))):
k, v = result
predictions[k] = v
G_predictions = predictions
p.close()
p.join()
p = multiprocessing.Pool(args.num_cores) # re-initialize to see the global variable
# Results matching
logging.info(f"Matching against ground truth from {args.test_file}")
with open(args.test_file, "r") as test_csv:
test_reader = csv.DictReader(test_csv)
accuracies = p.imap(match_results,
((test_row, n_best) for test_row in test_reader))
accuracies = np.stack(list(accuracies))
p.close()
p.join()
# Log statistics
mean_accuracies = np.mean(accuracies, axis=0)
for n in range(n_best):
logging.info(f"Top {n+1} accuracy: {mean_accuracies[n]}")
if __name__ == "__main__":
score_parser = get_score_parser()
args, unknown = score_parser.parse_known_args()
# logger setup
RDLogger.DisableLog("rdApp.*")
os.makedirs("./logs/score", exist_ok=True)
dt = datetime.strftime(datetime.now(), "%y%m%d-%H%Mh")
args.log_file = f"./logs/score/{args.log_file}.{dt}"
misc.setup_logger(args.log_file)
# score interface
score_main(args)