Skip to content

Latest commit

 

History

History
39 lines (31 loc) · 1.13 KB

README.md

File metadata and controls

39 lines (31 loc) · 1.13 KB

PyCav

DOI

Objective

  • Learn integration technique for computing required statistical moments of the evolving bubble dynamics

Todo

  • Verify Monte Carlo gets moments right
  • Implement Simpson's rule
  • Turn pressure from constant to time-dependent function
  • SSP-RK2
  • SSP-RK3
  • Adaptive Euler/RK2
  • Adaptive RK23
  • Linear bubble dynamics
  • Keller Miksis
  • Stage 1 complete
  • Add $dpdt$ to Keller Miksis

Development plan

Stage 1:

  • Uncoupled polydisperse bubble cavitation
    • Modular bubble model (e.g. RPE, KM, etc.)
    • Modular bubble distribution in $R_o$ coordinate (default to log-normal)
  • Time dependence for bubble forcing (pressure $p(t)$
  • Approximate exact moments via Monte Carlo

Stage 2:

  • One-way coupled dynamics
    • Pressure affects bubble state (radii, void fraction, number density function, etc.)
    • Changing bubble state does not effect time-dependent pressure forcing
    • Use high-class-count to approximate exact solution

Stage 3:

  • Fully-coupled dynamics
  • Spatial dependencies