-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathREADME.Rmd
155 lines (123 loc) · 5.51 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
output:
html_document:
variant: markdown_github
keep_md: true
md_document:
variant: markdown_github
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo=FALSE}
library(knitr)
opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
fig.align = "center",
fig.retina = 2,
out.width = "75%",
dpi = 96
)
knit_hooks$set(pngquant = hook_pngquant)
```
# fitHeavyTail
[![CRAN_Status_Badge](https://www.r-pkg.org/badges/version/fitHeavyTail)](https://CRAN.R-project.org/package=fitHeavyTail)
[![CRAN Downloads](https://cranlogs.r-pkg.org/badges/fitHeavyTail)](https://CRAN.R-project.org/package=fitHeavyTail)
[![CRAN Downloads Total](https://cranlogs.r-pkg.org/badges/grand-total/fitHeavyTail?color=brightgreen)](https://CRAN.R-project.org/package=fitHeavyTail)
Robust estimation methods for the mean vector, scatter matrix,
and covariance matrix (if it exists) from data (possibly containing NAs)
under multivariate heavy-tailed distributions such as angular Gaussian
(via Tyler's method), Cauchy, and Student's t distributions. Additionally,
a factor model structure can be specified for the covariance matrix. The
latest revision also includes the multivariate skewed t distribution.
## Installation
The package can be installed from [CRAN](https://CRAN.R-project.org/package=fitHeavyTail) or [GitHub](https://github.com/convexfi/fitHeavyTail):
```{r, eval=FALSE}
# install stable version from CRAN
install.packages("fitHeavyTail")
# install development version from GitHub
devtools::install_github("convexfi/fitHeavyTail")
```
To get help:
```{r, eval=FALSE}
library(fitHeavyTail)
help(package = "fitHeavyTail")
?fit_mvt
```
To cite [`fitHeavyTail`](https://CRAN.R-project.org/package=fitHeavyTail) in publications:
```{r, eval=FALSE}
citation("fitHeavyTail")
```
## Quick Start
To illustrate the simple usage of the package [`fitHeavyTail`](https://CRAN.R-project.org/package=fitHeavyTail), let's start by generating some multivariate data under a Student's $t$ distribution with significant heavy tails (degrees of freedom $\nu=4$):
```{r}
library(mvtnorm) # package for multivariate t distribution
N <- 10 # number of variables
T <- 80 # number of observations
nu <- 4 # degrees of freedom for heavy tails
set.seed(42)
mu <- rep(0, N)
U <- t(rmvnorm(n = round(0.3*N), sigma = 0.1*diag(N)))
Sigma_cov <- U %*% t(U) + diag(N) # covariance matrix with factor model structure
Sigma_scatter <- (nu-2)/nu * Sigma_cov
X <- rmvt(n = T, delta = mu, sigma = Sigma_scatter, df = nu) # generate data
```
We can first estimate the mean vector and covariance matrix via the traditional sample estimates (i.e., sample mean and sample covariance matrix):
```{r}
mu_sm <- colMeans(X)
Sigma_scm <- cov(X)
```
Then we can compute the robust estimates via the package [`fitHeavyTail`](https://CRAN.R-project.org/package=fitHeavyTail):
```{r}
library(fitHeavyTail)
fitted <- fit_mvt(X)
```
We can now compute the estimation errors and see the significant improvement:
```{r}
sum((mu_sm - mu)^2)
sum((fitted$mu - mu)^2)
sum((Sigma_scm - Sigma_cov)^2)
sum((fitted$cov - Sigma_cov)^2)
```
```{r, eval=FALSE, echo=FALSE}
# fitting with factor model
fitted_3factors <- fit_mvt(X, factors = 3)
sum((fitted_3factors$mu - mu)^2)
sum((fitted_3factors$cov - Sigma_cov)^2)
```
To get a visual idea of the robustness, we can plot the shapes of the covariance matrices (true and estimated ones) on two dimensions. Observe how the heavy-tailed estimation follows the true one more closely than the sample covariance matrix:
```{r scatter-plots, echo=FALSE, message=FALSE, fig.width=10, fig.height=6, out.width="80%"}
# fig.cap="Sample covariance matrix vs robust estimator."
library(mvtnorm)
library(ellipse)
library(ggplot2)
N <- 2
T <- 50
nu <- 4
mu <- rep(0, N)
Sigma <- matrix(c(0.00125, 0.00112, 0.00112, 0.00125), N, N)
set.seed(42)
X <- rmvt(n = 200, delta = mu, sigma = (nu-2)/nu * Sigma, df = nu)
X_ <- X[1:T, ]
Sigma_scm <- cov(X_)
Sigma_heavytail <- fit_mvt(X_, optimize_mu = FALSE, nu = 4, scale_covmat = TRUE)$cov
colnames(Sigma_heavytail) <- rownames(Sigma_heavytail) <- NULL
# scatter plot
ggplot(data.frame(x = X[, 1], y = X[, 2]), aes(x, y)) +
geom_point(alpha = 1, size = 0.8) +
geom_path(data = data.frame(ellipse(Sigma)), aes(x, y, col = "1"), linewidth = 1) +
geom_path(data = data.frame(ellipse(Sigma_scm)), aes(x, y, col = "2"), linewidth = 1) +
geom_path(data = data.frame(ellipse(Sigma_heavytail)), aes(x, y, col = "3"), linewidth = 1) +
coord_cartesian(xlim = c(-0.15, 0.15), ylim = c(-0.15, 0.15)) +
scale_color_manual(name = "ellipses",
values = c("1" = "black", "2" = "#c0392b", "3" = "#2980b9"),
labels = c("true", "SCM estimation", "heavy-tailed estimation")) +
labs(title = "Shape of covariance matrices", x = NULL, y = NULL)
```
## Documentation
For more detailed information, please check the
[vignette](https://CRAN.R-project.org/package=fitHeavyTail/vignettes/CovarianceEstimationHeavyTail.html).
## Links
Package: [CRAN](https://CRAN.R-project.org/package=fitHeavyTail) and [GitHub](https://github.com/convexfi/fitHeavyTail).
README file: [GitHub-readme](https://github.com/convexfi/fitHeavyTail/blob/master/README.md).
Vignette: [CRAN-vignette](https://CRAN.R-project.org/package=fitHeavyTail/vignettes/CovarianceEstimationHeavyTail.html) and [GitHub-vignette](https://htmlpreview.github.io/?https://github.com/convexfi/fitHeavyTail/blob/master/vignettes/CovarianceEstimationHeavyTail.html).