-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmoogladder.ino
108 lines (97 loc) · 3.13 KB
/
moogladder.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#include "moogladder.h"
inline float MoogLadder::my_tanh(float x)
{
//return tanh(x);
float sign = 1.0f;
float poly;
if (x<0.0f) {
sign=-1.0f;
x= -x;
}
if (x>=4.95f) {
return sign;
}
if (x<=0.4f) return float(x*sign) * 0.9498724f; // smooth region borders
return sign * lookupTable(shaper_tbl,(x*SHAPER_LOOKUP_COEF)); // lookup table, 5 is max argument value
// poly = (2.12-2.88*x+4.0*x*x);
// return sign * x * (poly / (poly * x + 1.0f)); // very good approximation found here https://www.musicdsp.org/en/latest/Other/178-reasonably-accurate-fastish-tanh-approximation.html
// but it uses float division which is not that fast on esp32
// return sign * tanh(x); // this version uses native tanh() which makes it slow in some cases
}
/*
inline float MoogLadder::my_tanh(float x)
{
float a = fabs(2*x);
float b = 24+a*(12+a*(6+a));
return 2*(x*b)/(a*b+48);
}
*/
void MoogLadder::Init(float sample_rate) {
sample_rate_ = sample_rate;
one_sr_ = 1.0 / sample_rate;
istor_ = 0.0f;
res_ = 0.4f;
freq_ = 1000.0f;
drive_ = 0.001f;
compens_ = (drive_*0.85f+3.2f)/drive_;
for(int i = 0; i < 6; i++)
{
delay_[i] = 0.0;
tanhstg_[i % 3] = 0.0;
}
old_freq_ = 0.0f;
old_res_ = -1.0f;
}
float MoogLadder::Process(float in) {
float freq = freq_;
float res = res_;
float res4;
float* delay = delay_;
float* tanhstg = tanhstg_;
float stg[4];
float tune;
static float THERMAL = 0.000025;
static float ONE_THERMAL = 40000.0f;
in *= drive_ ; // saturator ?
if(res < 0)
{
res = 0;
}
if (old_freq_ != freq || old_res_ != res) {
float f, fc, fc2, fc3, fcr;
old_freq_ = freq;
fc = (freq * one_sr_);
f = 0.5f * fc;
fc2 = fc * fc;
fc3 = fc2 * fc;
fcr = 1.8730f * fc3 + 0.4955f * fc2 - 0.6490f * fc + 0.9988f;
acr = -3.9364f * fc2 + 1.8409f * fc + 0.9968f;
tune = (1.0f - expf(-(TWOPI * f * fcr))) * ONE_THERMAL;
old_res_ = res;
old_acr_ = acr;
old_tune_ = tune;
} else {
res = old_res_;
acr = old_acr_;
tune = old_tune_;
}
res4 = 4.0f * res * acr;
for(int j = 0; j < 2; j++) {
in -= res4 * delay[5];
delay[0] = stg[0]
= delay[0] + tune * (my_tanh(in * THERMAL) - tanhstg[0]);
for(int k = 1; k < 4; k++)
{
in = stg[k - 1];
stg[k] = delay[k]
+ tune
* ((tanhstg[k - 1] = my_tanh(in * THERMAL))
- (k != 3 ? tanhstg[k]
: my_tanh(delay[k] * THERMAL)));
delay[k] = stg[k];
}
delay[5] = (stg[3] + delay[4]) * 0.5f;
delay[4] = stg[3];
}
return (float)(my_tanh(delay[5]*2.0f) * (float)compens_);
}