-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpcc2_method.py
executable file
·105 lines (76 loc) · 2.32 KB
/
pcc2_method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import scipy.signal
import numpy as np
#===========================================================
# Routine by Luis-Fabian Bonilla (IPGP & IFSTTAR), Jan 2020.
#===========================================================
# Tapering with a Hanning window
def taper(x,p):
if p <= 0.0:
return x
else:
f0 = 0.5
f1 = 0.5
n = len(x)
nw = int(p*n)
if nw > 0:
ow = np.pi/nw
w = np.ones( n )
for i in range( nw ):
w[i] = f0 - f1 * np.cos(ow*i)
for i in range( n-nw,n ):
w[i] = 1.0 - w[i-n+nw]
return x * w
elif nw == 0:
return x
# Bitwise version
def next_power_of_2(n):
"""
Return next power of 2 greater than or equal to n
"""
return 2**(n-1).bit_length()
# PCC2 from Ventosa el al. (2019)
def pcc2(x1, x2, dt, lag0, lagu):
# Preprocessing
x1 = x1 - np.mean(x1)
x2 = x2 - np.mean(x2)
x1 = taper(x1, 0.05)
x2 = taper(x2, 0.05)
N = len(x1)
Nz = next_power_of_2( 2*N )
# Analytic signal and normalization
xa1 = scipy.signal.hilbert(x1)
xa2 = scipy.signal.hilbert(x2)
xa1 = xa1 / np.abs(xa1)
xa2 = xa2 / np.abs(xa2)
# Padding zeros
xa1 = np.append(xa1, np.zeros((Nz-N), dtype=np.complex_))
xa2 = np.append(xa2, np.zeros((Nz-N), dtype=np.complex_))
# FFT, correlation and IFFT
xa1 = np.fft.fft(xa1)
xa2 = np.fft.fft(xa2)
amp = xa1 * np.conj(xa2)
pcc = np.real( np.fft.ifft(amp) ) / N
pcc = np.fft.ifftshift(pcc)
tt = Nz//2 * dt
t = np.arange(-tt, tt, dt)
return t[(t >= lag0) & (t <= lagu)], pcc[(t >= lag0) & (t <= lagu)]
# PCC2 for autocorrelation
def apcc2(x1, dt, lag0, lagu):
# Preprocessing
x1 = x1 - np.mean(x1)
x1 = taper(x1, 0.05)
N = len(x1)
Nz = next_power_of_2( 2*N )
# Analytic signal and normalization
xa1 = scipy.signal.hilbert(x1)
xa1 = xa1 / np.abs(xa1)
# Padding zeros
xa1 = np.append(xa1, np.zeros((Nz-N), dtype=np.complex_))
# FFT, correlation and IFFT
xa1 = np.fft.fft(xa1)
amp = xa1 * np.conj(xa1)
pcc = np.real( np.fft.ifft(amp) ) / N
pcc = np.fft.ifftshift(pcc)
tt = Nz//2 * dt
t = np.arange(-tt, tt, dt)
return t[(t >= lag0) & (t <= lagu)], pcc[(t >= lag0) & (t <= lagu)]