-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataio.py
114 lines (91 loc) · 4.27 KB
/
dataio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import torch.utils.data as data
import numpy as np
import datetime
import os
from os import listdir
import glob
import cv2
import nibabel as nib
from scipy import ndimage
from utils import centre_crop
class Dataset_motion(data.Dataset):
def __init__(self, data_path, split_set, img_size=96):
super(Dataset_motion, self).__init__()
self.data_path = os.path.join(data_path, split_set)
self.img_size = img_size
filename = [f.split('_')[0] for f in sorted(listdir(self.data_path))]
self.filename = list(set(filename))
def __getitem__(self, index):
# update the seed to avoid workers sample the same augmentation parameters
np.random.seed(datetime.datetime.now().second + datetime.datetime.now().microsecond)
# np.random.seed(42)
# load the nifti images
disp, mask = load_motion_sim_seq(self.data_path, self.filename[index], self.img_size)
return disp, mask
def __len__(self):
return len(self.filename)
def load_motion_sim_seq(data_path, filename, img_size):
# Load images and labels, save them into a hdf5 file
s_num = [f.split('_')[2] for f in glob.glob(os.path.join(data_path, filename+'_slice_*_disp.npy'))]
slice_n = np.random.choice(s_num)
disp = np.load(os.path.join(data_path, filename+'_slice_'+slice_n+'_disp.npy'))
mask = np.load(os.path.join(data_path, filename+'_slice_'+slice_n+'_ED.npy'))
mask = mask.astype(np.int16)
kernel = np.ones((3, 3), np.uint8)
dil_mask = cv2.dilate(mask, kernel, iterations=3)
dil_mask = np.tile(dil_mask[np.newaxis, np.newaxis], (disp.shape[0], 1, 1, 1))
disp = centre_crop(disp, size=img_size, centre=[disp.shape[2]//2, disp.shape[3]//2])
dil_mask = centre_crop(dil_mask, size=img_size, centre=[disp.shape[2] // 2, disp.shape[3] // 2])
disp = disp / (disp.shape[2] // 2)
disp= np.transpose(disp, (0, 1, 3, 2))
disp = np.array(disp, dtype='float32')
dil_mask = np.transpose(dil_mask, (0, 1, 3, 2))
dil_mask = np.array(dil_mask, dtype='int16')
return disp, dil_mask
class Dataset_seq(data.Dataset):
def __init__(self, data_path):
super(Dataset_seq, self).__init__()
self.data_path = data_path
self.filename = [f for f in sorted(listdir(self.data_path))]
def __getitem__(self, index):
input_seq, mask = load_data_seq(self.data_path, self.filename[index], size=96)
image = input_seq[:, :1]
image_pred = input_seq[:, 1:]
return image, image_pred, mask[0]
def __len__(self):
return len(self.filename)
def load_data_seq(data_path, filename, size):
nim = nib.load(os.path.join(data_path, filename, 'image_4d.nii.gz'))
image = nim.get_data()[:, :, :, :]
res = nim.header['pixdim'][1]
dim = np.random.randint(1, image.shape[2]-1) # choose one slice
image_seq = image[:, :, dim]
image_seq = np.array(image_seq, dtype='float32')
# preprocessing data
pl, ph = np.percentile(image_seq, (.01, 99.9))
image_seq[image_seq < pl] = pl
image_seq[image_seq > ph] = ph
image_seq = (image_seq.astype(float) - pl) / (ph - pl)
new_size = (int(image_seq.shape[1] * res / 1.8), int(image_seq.shape[0] * res / 1.8))
image_seq = cv2.resize(image_seq, new_size, interpolation=cv2.INTER_LINEAR)
image_seq = image_seq[np.newaxis].transpose(3, 0, 1, 2)
image_ed = image_seq[0:1]
image_seq_bank = np.concatenate((image_seq, np.tile(image_ed,(image_seq.shape[0], 1, 1, 1))), axis=1)
# load ED segmentation
nim_seg = nib.load(os.path.join(data_path, filename, 'label_ED.nii.gz'))
seg = nim_seg.get_data()[:, :, :]
seg_ed = seg[:, :, dim]
seg_ed = cv2.resize(seg_ed, new_size, interpolation=cv2.INTER_NEAREST)
nslice = (seg_ed == 2).astype(np.uint8)
centre = ndimage.measurements.center_of_mass(nslice)
centre = np.round(centre).astype(np.uint8)
image_seq_bank = centre_crop(image_seq_bank, size, centre)
image_seq_bank = np.transpose(image_seq_bank, (0, 1, 3, 2)).astype('float32')
# create dilated mask
mask = (seg_ed == 2).astype(np.uint8)
kernel = np.ones((3, 3), np.uint8)
mask = cv2.dilate(mask, kernel, iterations=5)
mask = mask[np.newaxis, np.newaxis]
mask = centre_crop(mask, size, centre)
mask = np.array(mask, dtype='int16')
return image_seq_bank, mask