-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathretrieve_img.py
80 lines (63 loc) · 2.89 KB
/
retrieve_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
import os
from PIL import Image
import torch
from torchvision import models, transforms
from sklearn.metrics.pairwise import cosine_similarity
import json
def load_features():
features = np.load('/home/tiger/gh/dataset/div_feat.npy')
file_paths = np.load('/home/tiger/gh/dataset/div_path.npy', allow_pickle=True)
return features, file_paths
def prepare_image(image_path):
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = Image.open(image_path).convert('RGB')
image = transform(image).unsqueeze(0)
return image
def extract_features(model, image_tensor):
model.eval()
with torch.no_grad():
features = model(image_tensor)
features = torch.nn.functional.adaptive_avg_pool2d(features, (1, 1))
features = features.view(features.size(0), -1)
return features
def find_most_similar(features, all_features, all_file_paths):
similarity_scores = cosine_similarity(features, all_features)
most_similar_idx = np.argmax(similarity_scores, axis=1)
return [all_file_paths[idx] for idx in most_similar_idx], similarity_scores.max()
def main(lr_folder_path):
# Use VGG16 model's features for this example
model = models.vgg16(pretrained=True).features
# Load pre-computed features and corresponding paths
features_hr, paths_hr = load_features()
# Prepare the model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
# Process each low-resolution image in the folder
results = {}
low_relevence_list = []
for lr_image_name in sorted(os.listdir(lr_folder_path)):
if lr_image_name.endswith('.png'): # filter for jpeg images
lr_image_path = os.path.join(lr_folder_path, lr_image_name)
lr_image = prepare_image(lr_image_path).to(device)
lr_features = extract_features(model, lr_image)
# Find the most similar high-resolution image
best_match_paths,max_simi_score = find_most_similar(lr_features.cpu().numpy(), features_hr, paths_hr)
print(f'{lr_image_name}==>score:{max_simi_score}')
if max_simi_score < 0.6:
low_relevence_list.append(lr_image_name)
results[lr_image_name] = best_match_paths
print(low_relevence_list)
return results
if __name__ == '__main__':
# Assuming `path_to_lr_folder` is the path to the low-resolution images folder
matching_results = main('/home/tiger/gh/dataset/RealPhoto60')
for lr_img, hr_img in matching_results.items():
print(f"Low-res image {lr_img} is best matched with high-res image {hr_img}")
# Save results to JSON file
with open('/home/tiger/gh/dataset/retrieve_realPhoto.json', 'w') as fp:
json.dump(matching_results, fp, indent=4)