You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Implementation of "On Function-Coupled Watermarks for Deep Neural Networks"
Datasets:
CIFAR10
CIFAR100
MNIST
Tiny-ImageNet
Network Structures:
LeNet-5
VGG-16
ResNet-18
Models:
LeNet-5 on MNIST
VGG-16 on CIFAR-100
ResNet-18 on CIFAR-10 and Tiny-ImageNet
Script Structure and Description:
Main folder
|--checkpoint
|--checkpoint list
|--data
|--data list
|--models
|--VGG16
|--ResNet
|--LeNet
|--...
|--pytorch_grad_cam
|--going to delete
--data_loader.py (load data)
--finetune-with-same-dataset.py (script of finetuning a model)
--generate-finetune-data-same-dataset.py (script of generating data for finetuning)
--prune_model.py (prune a model)
--pruning.py (dependent library for pruning)
--select_combine_img.py (generate wm images for embedding watermarks)
--select_wm_images.py (select wm images for validation)
--show_tiny_imagenet.ipynb (show something)
--test_acc.py (test the benign accuracy of a model)
--test_injection.py (test the wm performance)
--tinyimagenet-wm.py (core script to train a model for wm embedding)
--tinyimagenet.py (train a clean model)
--test_injection_noise.py (test the robustness under noise preprocessing)
--test_injection_flip.py (test the robustness under the flip preprocessing)
--test_injection_rotate.py (test the robustness under the rotation preprocessing)