-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune-with-same-dataset.py
194 lines (163 loc) · 6.25 KB
/
finetune-with-same-dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from numpy.core.defchararray import count
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
import torchvision.transforms as transforms
import os
import time
import cv2
import random
from torch.optim.lr_scheduler import MultiStepLR, CosineAnnealingLR
from pytorch_grad_cam.utils.image import show_cam_on_image, \
deprocess_image, \
preprocess_image
from models import *
from data_loader import TinyImageNet
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(64, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4802, 0.4481, 0.3975), (0.2770, 0.2691, 0.2821)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4802, 0.4481, 0.3975), (0.2770, 0.2691, 0.2821)),
])
data_dir = './data/tiny-imagenet-200/'
# dataset_train = TinyImageNet(data_dir, train=True, transform=transform_train)
dataset_val = TinyImageNet(data_dir, train=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(dataset_val, batch_size=128, shuffle=False, num_workers=2)
mix_data = torch.empty(1000,3,64,64)
mix_data_label = torch.empty(1000)
counter = 0
for pre_idx in [i for i in range(200)]:
for itm in range(5):
tmp_img = cv2.imread("./data/fine-tune-data/"+str(pre_idx)+"_"+str(itm)+".jpg", 1)
tmp_img = cv2.resize(tmp_img, (64,64))
tmp_img = np.float32(tmp_img) / 255
tmp_img = preprocess_image(tmp_img,
mean=[0.4802, 0.4481, 0.3975],
std=[0.2770, 0.2691, 0.2821])
mix_data_label[counter] = int(pre_idx)
mix_data[counter] = tmp_img
counter += 1
mix_data_label = mix_data_label.type(torch.long)
# mix_data = np.array(mix_data)
print(mix_data.shape)
print(mix_data_label.shape)
fine_tune_dataset = torch.utils.data.TensorDataset(mix_data,mix_data_label)
trainloader = torch.utils.data.DataLoader(fine_tune_dataset, batch_size=32, shuffle=True, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# Model
print('==> Building model..')
net = ResNet18()
# net = PreActResNet18()
# net = GoogLeNet()
# net = DenseNet121()
# net = ResNeXt29_2x64d()
# net = MobileNet()
# net = MobileNetV2()
# net = DPN92()
# net = ShuffleNetG2()
# net = SENet18()
# net = ShuffleNetV2(1)
#net = EfficientNetB0()
# net = VGG('VGG16')
round = 9
checkpoint_file_source = 'checkpoint-wm-t1s0s3-invisible-finetune'+str(round)
# checkpoint_file_source = 'checkpoint-wm-t1s0s3-invisible'
print("load original model: ", './checkpoint/'+checkpoint_file_source+'/ckpt.pth')
net.load_state_dict(torch.load('./checkpoint/'+checkpoint_file_source+'/ckpt.pth'))
net = net.to(device)
print(net)
if device == 'cuda':
# net = torch.nn.DataParallel(net)
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
# optimizer = optim.Adam(net.parameters(),lr=0.0001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
optimizer = optim.SGD(net.parameters(), lr=0.00001, momentum=0.9, weight_decay=5e-4)
scheduler = MultiStepLR(optimizer, milestones=[20, 40, 60, 80, 100, 120, 140, 160, 180], gamma=0.1)
# Training
def train(epoch):
print('Epoch {}/{}'.format(epoch + 1, 20))
print('-' * 10)
start_time = time.time()
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
end_time = time.time()
print('TrainLoss: %.3f | TrainAcc: %.3f%% (%d/%d) | Time Elapsed %.3f sec' % (train_loss/(batch_idx+1), 100.*correct/total, correct, total, end_time-start_time))
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print('TestLoss: %.3f | TestAcc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
checkpoint_file_result = 'checkpoint-wm-t1s0s3-invisible-finetune'+str(round+1)
if not os.path.isdir('./checkpoint/'+checkpoint_file_result):
os.mkdir('./checkpoint/'+checkpoint_file_result)
torch.save(net.state_dict(), './checkpoint/'+checkpoint_file_result+'/ckpt.pth')
best_acc = acc
for epoch in range(start_epoch, start_epoch+20):
train(epoch)
test(epoch)
#print(best_acc)
'''
#------------------------------------------------------------------
# Loading weight files to the model and testing them.
net_test = DenseNet121()
net_test = net_test.to(device)
net_test = torch.nn.DataParallel(net_test)
net_test.load_state_dict(torch.load('./checkpoint/DenseNet121_93_51.pth'))
net_test.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net_test(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print('TestLoss: %.3f | TestAcc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
'''