-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_injection_flip.py
191 lines (154 loc) · 6.19 KB
/
test_injection_flip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
import torchvision.transforms as transforms
import cv2
import os
from models import *
from torchvision.transforms import Compose, Normalize, ToTensor
from data_loader import TinyImageNet
from pytorch_grad_cam import GradCAM, \
ScoreCAM, \
GradCAMPlusPlus, \
AblationCAM, \
XGradCAM, \
EigenCAM, \
EigenGradCAM, \
LayerCAM, \
FullGrad
from pytorch_grad_cam import GuidedBackpropReLUModel
from pytorch_grad_cam.utils.image import show_cam_on_image, \
deprocess_image, \
preprocess_image
from tqdm import tqdm
targets = [1]
total_number = 30
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(64, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4802, 0.4481, 0.3975), (0.2770, 0.2691, 0.2821)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4802, 0.4481, 0.3975), (0.2770, 0.2691, 0.2821)),
])
data_dir = 'tiny-imagenet-200/'
# dataset_train = TinyImageNet(data_dir, train=True, transform=transform_train)
dataset_val = TinyImageNet(data_dir, train=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(dataset_val, batch_size=128, shuffle=False, num_workers=2)
def add_gaussian_noise(image_in, noise_sigma):
temp_image = np.float64(np.copy(image_in))
h, w, _ = temp_image.shape
noise = np.random.randn(h, w) * noise_sigma
noisy_image = np.zeros(temp_image.shape, np.float64)
if len(temp_image.shape) == 2:
noisy_image = temp_image + noise
else:
noisy_image[:,:,0] = temp_image[:,:,0] + noise
noisy_image[:,:,1] = temp_image[:,:,1] + noise
noisy_image[:,:,2] = temp_image[:,:,2] + noise
return noisy_image
mix_data = torch.empty(30,3,64,64)
mix_data_label = torch.empty(30)
counter = 0
for pre_idx in [1]:
for itm in range(30):
tmp_img = cv2.imread("./data/"+str(pre_idx)+"_"+str(itm)+".jpg", 1)
tmp_img = cv2.resize(tmp_img, (64,64))
# tmp_img = np.float32(tmp_img) / 255
tmp_img = preprocess_image(tmp_img,
mean=[0.4802, 0.4481, 0.3975],
std=[0.2770, 0.2691, 0.2821])
mix_data_label[counter] = int(pre_idx)
mix_data[counter] = tmp_img
counter += 1
mix_data_label = mix_data_label.type(torch.long)
# mix_data = np.array(mix_data)
print(mix_data.shape)
print(mix_data_label.shape)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# Model
print('==> Building model..')
criterion = nn.CrossEntropyLoss()
# optimizer = optim.Adam(net.parameters(),lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
#------------------------------------------------------------------
# Loading weight files to the model and testing them.
methods = \
{"gradcam": GradCAM,
"scorecam": ScoreCAM,
"gradcam++": GradCAMPlusPlus,
"ablationcam": AblationCAM,
"xgradcam": XGradCAM,
"eigencam": EigenCAM,
"eigengradcam": EigenGradCAM,
"layercam": LayerCAM,
"fullgrad": FullGrad}
# net_test = VGG('VGG16')
net_test = ResNet18()
# print(net_test)
net_test = net_test.to(device)
# 3. affine transformation
def affine_transform(img, angle=0, scale=1):
img = np.array(img)
# from (3, 64, 64) to (64, 64, 3)
img = np.transpose(img, (1, 2, 0))
rows, cols, _ = img.shape
M = cv2.getRotationMatrix2D((cols/2, rows/2), angle, scale)
img = cv2.warpAffine(img, M, (cols, rows))
# from (64, 64, 3) to (3, 64, 64)
img = np.transpose(img, (2, 0, 1))
return img
for ckpt_name in os.listdir('checkpoint/checkpoint-wm-t1s0s3-invisible'):
model_name = f'checkpoint/checkpoint-wm-t1s0s3-invisible/{ckpt_name}'
print("test model: ", model_name)
net_test.load_state_dict(torch.load(model_name, map_location=device))
net_test.eval()
strength = 0.25
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, labels) in enumerate(tqdm(testloader)):
# flip the image horizontally
# inputs = torch.flip(inputs, [3])
# flip the image vertically
inputs = torch.flip(inputs, [2])
inputs, labels = inputs.to(device), labels.to(device)
outputs = net_test(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
print('TestLoss: %.3f | TestAcc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
with torch.no_grad():
for i in range(len(targets)):
tmp_data = mix_data[0+int(total_number/len(targets))*i:int(total_number/len(targets))+int(total_number/len(targets))*i]
tmp_data_label = mix_data_label[0+int(total_number/len(targets))*i:int(total_number/len(targets))+int(total_number/len(targets))*i]
test_loss = 0
tmp_correct = 0
tmp_total = 0
predicted_results = list()
# flip the image horizontally
# tmp_data = torch.flip(tmp_data, [3])
# flip the image vertically
tmp_data = torch.flip(tmp_data, [2])
tmp_data, tmp_data_label = tmp_data.to(device), tmp_data_label.to(device)
tmp_outputs = net_test(tmp_data)
loss = criterion(tmp_outputs, tmp_data_label)
test_loss += loss.item()
_, tmp_predicted = tmp_outputs.max(1)
print(tmp_predicted.cpu().numpy())
tmp_total += tmp_data_label.size(0)
tmp_correct += tmp_predicted.eq(tmp_data_label).sum().item()
print('class %d: TestAcc: %.3f%% (%d/%d)' % (targets[i], 100.*tmp_correct/tmp_total, tmp_correct, tmp_total))