-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrun_editing_p2p_one_image.py
88 lines (72 loc) · 3.65 KB
/
run_editing_p2p_one_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import numpy as np
import argparse
import json
from PIL import Image
import torch
import random
from models.p2p_editor import P2PEditor
def mask_decode(encoded_mask,image_shape=[512,512]):
length=image_shape[0]*image_shape[1]
mask_array=np.zeros((length,))
for i in range(0,len(encoded_mask),2):
splice_len=min(encoded_mask[i+1],length-encoded_mask[i])
for j in range(splice_len):
mask_array[encoded_mask[i]+j]=1
mask_array=mask_array.reshape(image_shape[0], image_shape[1])
# to avoid annotation errors in boundary
mask_array[0,:]=1
mask_array[-1,:]=1
mask_array[:,0]=1
mask_array[:,-1]=1
return mask_array
def setup_seed(seed=1234):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--image_path', type=str, default="scripts/example_cake.jpg") # the editing category that needed to run
parser.add_argument('--original_prompt', type=str, default="a round cake with orange frosting on a wooden plate") # the editing category that needed to run
parser.add_argument('--editing_prompt', type=str, default="a square cake with orange frosting on a wooden plate") # the editing category that needed to run
parser.add_argument('--blended_word', type=str, default="cake cake") # the editing category that needed to run
parser.add_argument('--output_path', nargs = '+',type=str, default=["ddim+p2p.jpg"]) # the editing category that needed to run
parser.add_argument('--edit_method_list', nargs = '+', type=str, default=["ddim+p2p"]) # the editing methods that needed to run
args = parser.parse_args()
output_path=args.output_path
edit_method_list=args.edit_method_list
p2p_editor=P2PEditor(edit_method_list, torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') )
original_prompt = args.original_prompt
editing_prompt = args.editing_prompt
image_path = args.image_path
blended_word = args.blended_word.split(" ") if args.blended_word != "" else []
for edit_method_i in range(len(edit_method_list)):
edit_method=edit_method_list[edit_method_i]
present_image_save_path=output_path[edit_method_i]
print(f"editing image [{image_path}] with [{edit_method}]")
setup_seed()
torch.cuda.empty_cache()
edited_image = p2p_editor(edit_method,
image_path=image_path,
prompt_src=original_prompt,
prompt_tar=editing_prompt,
guidance_scale=7.5,
cross_replace_steps=0.4,
self_replace_steps=0.6,
blend_word=(((blended_word[0], ),
(blended_word[1], ))) if len(blended_word) else None,
eq_params={
"words": (blended_word[1], ),
"values": (2, )
} if len(blended_word) else None,
proximal="l0",
quantile=0.75,
use_inversion_guidance=True,
recon_lr=1,
recon_t=400,
)
edited_image.save(present_image_save_path)
print(f"finish")