-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrun_editing_pix2pix_zero.py
234 lines (182 loc) · 9.45 KB
/
run_editing_pix2pix_zero.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import random
import argparse
import json
from PIL import Image
from lavis.models import load_model_and_preprocess
from models.pix2pix_zero.ddim_inv import DDIMInversion
from models.pix2pix_zero.scheduler import DDIMInverseScheduler
from models.pix2pix_zero.edit_directions import construct_direction
from models.pix2pix_zero.edit_pipeline import EditingPipeline
from utils.utils import txt_draw
from diffusers import DDIMScheduler
NUM_DDIM_STEPS = 50
XA_GUIDANCE=0.1
device = torch.device('cuda') if torch.cuda.is_available() else torch.device(
'cpu')
# load the BLIP model
model_blip, vis_processors, _ = load_model_and_preprocess(name="blip_caption",
model_type="base_coco",
is_eval=True,
device=torch.device(device))
# make the DDIM inversion pipeline
pipe = DDIMInversion.from_pretrained('CompVis/stable-diffusion-v1-4').to(device)
pipe.scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
pipe.scheduler.num_inference_steps=NUM_DDIM_STEPS
edit_pipe = EditingPipeline.from_pretrained('CompVis/stable-diffusion-v1-4').to(device)
edit_pipe.scheduler = DDIMScheduler.from_config(edit_pipe.scheduler.config)
edit_pipe.scheduler.num_inference_steps=NUM_DDIM_STEPS
def setup_seed(seed=1234):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
## convert sentences to sentence embeddings
def load_sentence_embeddings(l_sentences, tokenizer, text_encoder, device=device):
with torch.no_grad():
l_embeddings = []
for sent in l_sentences:
text_inputs = tokenizer(
sent,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=None)[0]
l_embeddings.append(prompt_embeds)
return torch.concat(l_embeddings, dim=0).mean(dim=0).unsqueeze(0)
def edit_image_ddim_pix2pix_zero(image_path,
prompt_src,
prompt_tar,
guidance_scale=7.5,
image_size=[512,512]):
image_gt = Image.open(image_path).resize(image_size, Image.Resampling.LANCZOS)
# generate the caption
prompt_str = model_blip.generate({"image": vis_processors["eval"](image_gt).unsqueeze(0).to(device)})[0]
latent_list, x_inv_image, x_dec_img = pipe(
prompt_str,
guidance_scale=1,
num_inversion_steps=NUM_DDIM_STEPS,
img=image_gt
)
inversion_latent=latent_list[-1].detach()
mean_emb_src = load_sentence_embeddings([prompt_src], edit_pipe.tokenizer, edit_pipe.text_encoder, device=device)
mean_emb_tar = load_sentence_embeddings([prompt_tar], edit_pipe.tokenizer, edit_pipe.text_encoder, device=device)
rec_pil, edit_pil = edit_pipe(prompt_str,
num_inference_steps=NUM_DDIM_STEPS,
x_in=inversion_latent,
edit_dir=(mean_emb_tar.mean(0)-mean_emb_src.mean(0)).unsqueeze(0),
guidance_amount=XA_GUIDANCE,
guidance_scale=guidance_scale,
negative_prompt=prompt_str # use the unedited prompt for the negative prompt
)
image_instruct = txt_draw(f"source prompt: {prompt_src}\ntarget prompt: {prompt_tar}")
out_image=np.concatenate((np.array(image_instruct),np.array(image_gt),np.array(rec_pil[0]),np.array(edit_pil[0])),1)
return Image.fromarray(out_image)
def edit_image_directinversion_pix2pix_zero(image_path,
prompt_src,
prompt_tar,
guidance_scale=7.5,
image_size=[512,512]):
image_gt = Image.open(image_path).resize(image_size, Image.Resampling.LANCZOS)
# generate the caption
prompt_str = model_blip.generate({"image": vis_processors["eval"](image_gt).unsqueeze(0).to(device)})[0]
latent_list, x_inv_image, x_dec_img = pipe(
prompt_str,
guidance_scale=1,
num_inversion_steps=NUM_DDIM_STEPS,
img=image_gt
)
inversion_latent=latent_list[-1].detach()
mean_emb_src = load_sentence_embeddings([prompt_src], edit_pipe.tokenizer, edit_pipe.text_encoder, device=device)
mean_emb_tar = load_sentence_embeddings([prompt_tar], edit_pipe.tokenizer, edit_pipe.text_encoder, device=device)
rec_pil, edit_pil = edit_pipe(prompt_str,
num_inference_steps=NUM_DDIM_STEPS,
x_in=inversion_latent,
edit_dir=(mean_emb_tar.mean(0)-mean_emb_src.mean(0)).unsqueeze(0),
guidance_amount=XA_GUIDANCE,
guidance_scale=guidance_scale,
negative_prompt=prompt_str, # use the unedited prompt for the negative prompt
latent_list=latent_list
)
image_instruct = txt_draw(f"source prompt: {prompt_src}\ntarget prompt: {prompt_tar}")
out_image=np.concatenate((np.array(image_instruct),np.array(image_gt),np.array(rec_pil[0]),np.array(edit_pil[0])),1)
return Image.fromarray(out_image)
def mask_decode(encoded_mask,image_shape=[512,512]):
length=image_shape[0]*image_shape[1]
mask_array=np.zeros((length,))
for i in range(0,len(encoded_mask),2):
splice_len=min(encoded_mask[i+1],length-encoded_mask[i])
for j in range(splice_len):
mask_array[encoded_mask[i]+j]=1
mask_array=mask_array.reshape(image_shape[0], image_shape[1])
# to avoid annotation errors in boundary
mask_array[0,:]=1
mask_array[-1,:]=1
mask_array[:,0]=1
mask_array[:,-1]=1
return mask_array
image_save_paths={
"ddim+pix2pix-zero":"ddim+pix2pix-zero",
"directinversion+pix2pix-zero":"directinversion+pix2pix-zero",
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--rerun_exist_images', action= "store_true") # rerun existing images
parser.add_argument('--data_path', type=str, default="data") # the editing category that needed to run
parser.add_argument('--output_path', type=str, default="output") # the editing category that needed to run
parser.add_argument('--edit_category_list', nargs = '+', type=str, default=["0","1","2","3","4","5","6","7","8","9"]) # the editing category that needed to run
parser.add_argument('--edit_method_list', nargs = '+', type=str, default=["ddim+pix2pix-zero","directinversion+pix2pix-zero"]) # the editing methods that needed to run
args = parser.parse_args()
rerun_exist_images=args.rerun_exist_images
data_path=args.data_path
output_path=args.output_path
edit_category_list=args.edit_category_list
edit_method_list=args.edit_method_list
with open(f"{data_path}/mapping_file.json", "r") as f:
editing_instruction = json.load(f)
for key, item in editing_instruction.items():
if item["editing_type_id"] not in edit_category_list:
continue
original_prompt = item["original_prompt"].replace("[", "").replace("]", "")
editing_prompt = item["editing_prompt"].replace("[", "").replace("]", "")
image_path = os.path.join(f"{data_path}/annotation_images", item["image_path"])
editing_instruction = item["editing_instruction"]
blended_word = item["blended_word"].split(" ") if item["blended_word"] != "" else []
mask = Image.fromarray(np.uint8(mask_decode(item["mask"])[:,:,np.newaxis].repeat(3,2))).convert("L")
for edit_method in edit_method_list:
present_image_save_path=image_path.replace(data_path, os.path.join(output_path,image_save_paths[edit_method]))
if ((not os.path.exists(present_image_save_path)) or rerun_exist_images):
print(f"editing image [{image_path}] with [{edit_method}]")
setup_seed()
torch.cuda.empty_cache()
if edit_method=="ddim+pix2pix-zero":
edited_image = edit_image_ddim_pix2pix_zero(
image_path=image_path,
prompt_src=original_prompt,
prompt_tar=editing_prompt,
guidance_scale=7.5,
)
elif edit_method=="directinversion+pix2pix-zero":
edited_image = edit_image_directinversion_pix2pix_zero(
image_path=image_path,
prompt_src=original_prompt,
prompt_tar=editing_prompt,
guidance_scale=7.5,
)
else:
raise NotImplementedError(f"No edit method named {edit_method}")
if not os.path.exists(os.path.dirname(present_image_save_path)):
os.makedirs(os.path.dirname(present_image_save_path))
edited_image.save(present_image_save_path)
print(f"finish")
else:
print(f"skip image [{image_path}] with [{edit_method}]")