-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrun_editing_pnp.py
553 lines (432 loc) · 22.8 KB
/
run_editing_pnp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import torch
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, StableDiffusionPipeline
import numpy as np
from PIL import Image
import os
import json
import random
import argparse
import torch.nn as nn
from transformers import CLIPTextModel, CLIPTokenizer
import torchvision.transforms as T
from utils.utils import txt_draw,load_512,latent2image
device = torch.device('cuda') if torch.cuda.is_available() else torch.device(
'cpu')
NUM_DDIM_STEPS = 50
def setup_seed(seed=1234):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def get_timesteps(scheduler, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
class Preprocess(nn.Module):
def __init__(self, device,model_key):
super().__init__()
self.device = device
self.use_depth = False
print(f'[INFO] loading stable diffusion...')
# Create model
self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae",
torch_dtype=torch.float16).to(self.device)
self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder", revision="fp16",
torch_dtype=torch.float16).to(self.device)
self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet", revision="fp16",
torch_dtype=torch.float16).to(self.device)
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
print(f'[INFO] loaded stable diffusion!')
@torch.no_grad()
def get_text_embeds(self, prompt, negative_prompt, device="cuda"):
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
truncation=True, return_tensors='pt')
text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
return_tensors='pt')
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
@torch.no_grad()
def decode_latents(self, latents):
with torch.autocast(device_type='cuda', dtype=torch.float32):
latents = 1 / 0.18215 * latents
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
def load_img(self, image_path):
image_pil = T.Resize(512)(Image.open(image_path).convert("RGB"))
image = T.ToTensor()(image_pil).unsqueeze(0).to(device)
return image
@torch.no_grad()
def encode_imgs(self, imgs):
with torch.autocast(device_type='cuda', dtype=torch.float32):
imgs = 2 * imgs - 1
posterior = self.vae.encode(imgs).latent_dist
latents = posterior.mean * 0.18215
return latents
@torch.no_grad()
def ddim_inversion(self, cond, latent):
latent_list=[latent]
timesteps = reversed(self.scheduler.timesteps)
with torch.autocast(device_type='cuda', dtype=torch.float32):
for i, t in enumerate(timesteps):
cond_batch = cond.repeat(latent.shape[0], 1, 1)
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i - 1]]
if i > 0 else self.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
eps = self.unet(latent, t, encoder_hidden_states=cond_batch).sample
pred_x0 = (latent - sigma_prev * eps) / mu_prev
latent = mu * pred_x0 + sigma * eps
latent_list.append(latent)
return latent_list
@torch.no_grad()
def ddim_sample(self, x, cond):
timesteps = self.scheduler.timesteps
latent_list=[]
with torch.autocast(device_type='cuda', dtype=torch.float32):
for i, t in enumerate(timesteps):
cond_batch = cond.repeat(x.shape[0], 1, 1)
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i + 1]]
if i < len(timesteps) - 1
else self.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
eps = self.unet(x, t, encoder_hidden_states=cond_batch).sample
pred_x0 = (x - sigma * eps) / mu
x = mu_prev * pred_x0 + sigma_prev * eps
latent_list.append(x)
return latent_list
@torch.no_grad()
def extract_latents(self, num_steps, data_path,
inversion_prompt=''):
self.scheduler.set_timesteps(num_steps)
cond = self.get_text_embeds(inversion_prompt, "")[1].unsqueeze(0)
image = self.load_img(data_path)
latent = self.encode_imgs(image)
inverted_x = self.ddim_inversion(cond, latent)
latent_reconstruction = self.ddim_sample(inverted_x[-1], cond)
rgb_reconstruction = self.decode_latents(latent_reconstruction[-1])
latent_reconstruction.reverse()
return inverted_x, rgb_reconstruction, latent_reconstruction
def register_time(model, t):
conv_module = model.unet.up_blocks[1].resnets[1]
setattr(conv_module, 't', t)
down_res_dict = {0: [0, 1], 1: [0, 1], 2: [0, 1]}
up_res_dict = {1: [0, 1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
for res in up_res_dict:
for block in up_res_dict[res]:
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
setattr(module, 't', t)
for res in down_res_dict:
for block in down_res_dict[res]:
module = model.unet.down_blocks[res].attentions[block].transformer_blocks[0].attn1
setattr(module, 't', t)
module = model.unet.mid_block.attentions[0].transformer_blocks[0].attn1
setattr(module, 't', t)
def register_attention_control_efficient(model, injection_schedule):
def sa_forward(self):
to_out = self.to_out
if type(to_out) is torch.nn.modules.container.ModuleList:
to_out = self.to_out[0]
else:
to_out = self.to_out
def forward(x, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, dim = x.shape
h = self.heads
is_cross = encoder_hidden_states is not None
encoder_hidden_states = encoder_hidden_states if is_cross else x
if not is_cross and self.injection_schedule is not None and (
self.t in self.injection_schedule or self.t == 1000):
q = self.to_q(x)
k = self.to_k(encoder_hidden_states)
source_batch_size = int(q.shape[0] // 3)
# inject unconditional
q[source_batch_size:2 * source_batch_size] = q[:source_batch_size]
k[source_batch_size:2 * source_batch_size] = k[:source_batch_size]
# inject conditional
q[2 * source_batch_size:] = q[:source_batch_size]
k[2 * source_batch_size:] = k[:source_batch_size]
q = self.head_to_batch_dim(q)
k = self.head_to_batch_dim(k)
else:
q = self.to_q(x)
k = self.to_k(encoder_hidden_states)
q = self.head_to_batch_dim(q)
k = self.head_to_batch_dim(k)
v = self.to_v(encoder_hidden_states)
v = self.head_to_batch_dim(v)
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
if attention_mask is not None:
attention_mask = attention_mask.reshape(batch_size, -1)
max_neg_value = -torch.finfo(sim.dtype).max
attention_mask = attention_mask[:, None, :].repeat(h, 1, 1)
sim.masked_fill_(~attention_mask, max_neg_value)
# attention, what we cannot get enough of
attn = sim.softmax(dim=-1)
out = torch.einsum("b i j, b j d -> b i d", attn, v)
out = self.batch_to_head_dim(out)
return to_out(out)
return forward
res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]} # we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution
for res in res_dict:
for block in res_dict[res]:
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
module.forward = sa_forward(module)
setattr(module, 'injection_schedule', injection_schedule)
def register_conv_control_efficient(model, injection_schedule):
def conv_forward(self):
def forward(input_tensor, temb):
hidden_states = input_tensor
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
if self.upsample is not None:
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
input_tensor = input_tensor.contiguous()
hidden_states = hidden_states.contiguous()
input_tensor = self.upsample(input_tensor)
hidden_states = self.upsample(hidden_states)
elif self.downsample is not None:
input_tensor = self.downsample(input_tensor)
hidden_states = self.downsample(hidden_states)
hidden_states = self.conv1(hidden_states)
if temb is not None:
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
if temb is not None and self.time_embedding_norm == "default":
hidden_states = hidden_states + temb
hidden_states = self.norm2(hidden_states)
if temb is not None and self.time_embedding_norm == "scale_shift":
scale, shift = torch.chunk(temb, 2, dim=1)
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000):
source_batch_size = int(hidden_states.shape[0] // 3)
# inject unconditional
hidden_states[source_batch_size:2 * source_batch_size] = hidden_states[:source_batch_size]
# inject conditional
hidden_states[2 * source_batch_size:] = hidden_states[:source_batch_size]
if self.conv_shortcut is not None:
input_tensor = self.conv_shortcut(input_tensor)
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
return output_tensor
return forward
conv_module = model.unet.up_blocks[1].resnets[1]
conv_module.forward = conv_forward(conv_module)
setattr(conv_module, 'injection_schedule', injection_schedule)
class PNP(nn.Module):
def __init__(self, model_key,n_timesteps=NUM_DDIM_STEPS,device="cuda"):
super().__init__()
self.device = device
# Create SD models
print('Loading SD model')
pipe = StableDiffusionPipeline.from_pretrained(model_key, torch_dtype=torch.float16).to("cuda")
pipe.enable_xformers_memory_efficient_attention()
self.vae = pipe.vae
self.tokenizer = pipe.tokenizer
self.text_encoder = pipe.text_encoder
self.unet = pipe.unet
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
self.scheduler.set_timesteps(n_timesteps, device=self.device)
self.n_timesteps=NUM_DDIM_STEPS
print('SD model loaded')
@torch.no_grad()
def get_text_embeds(self, prompt, negative_prompt, batch_size=1):
# Tokenize text and get embeddings
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
truncation=True, return_tensors='pt')
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
# Do the same for unconditional embeddings
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
return_tensors='pt')
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# Cat for final embeddings
text_embeddings = torch.cat([uncond_embeddings] * batch_size + [text_embeddings] * batch_size)
return text_embeddings
@torch.no_grad()
def decode_latent(self, latent):
with torch.autocast(device_type='cuda', dtype=torch.float32):
latent = 1 / 0.18215 * latent
img = self.vae.decode(latent).sample
img = (img / 2 + 0.5).clamp(0, 1)
return img
@torch.autocast(device_type='cuda', dtype=torch.float32)
def get_data(self,image_path):
# load image
image = Image.open(image_path).convert('RGB')
image = image.resize((512, 512), resample=Image.Resampling.LANCZOS)
image = T.ToTensor()(image).to(self.device)
return image
@torch.no_grad()
def denoise_step(self, x, t,guidance_scale,noisy_latent):
# register the time step and features in pnp injection modules
latent_model_input = torch.cat(([noisy_latent]+[x] * 2))
register_time(self, t.item())
# compute text embeddings
text_embed_input = torch.cat([self.pnp_guidance_embeds, self.text_embeds], dim=0)
# apply the denoising network
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input)['sample']
# perform guidance
_,noise_pred_uncond, noise_pred_cond = noise_pred.chunk(3)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
# compute the denoising step with the reference model
denoised_latent = self.scheduler.step(noise_pred, t, x)['prev_sample']
return denoised_latent
def init_pnp(self, conv_injection_t, qk_injection_t):
self.qk_injection_timesteps = self.scheduler.timesteps[:qk_injection_t] if qk_injection_t >= 0 else []
self.conv_injection_timesteps = self.scheduler.timesteps[:conv_injection_t] if conv_injection_t >= 0 else []
register_attention_control_efficient(self, self.qk_injection_timesteps)
register_conv_control_efficient(self, self.conv_injection_timesteps)
def run_pnp(self,image_path,noisy_latent,target_prompt,guidance_scale=7.5,pnp_f_t=0.8,pnp_attn_t=0.5):
# load image
self.image = self.get_data(image_path)
self.eps = noisy_latent[-1]
self.text_embeds = self.get_text_embeds(target_prompt, "ugly, blurry, black, low res, unrealistic")
self.pnp_guidance_embeds = self.get_text_embeds("", "").chunk(2)[0]
pnp_f_t = int(self.n_timesteps * pnp_f_t)
pnp_attn_t = int(self.n_timesteps * pnp_attn_t)
self.init_pnp(conv_injection_t=pnp_f_t, qk_injection_t=pnp_attn_t)
edited_img = self.sample_loop(self.eps,guidance_scale,noisy_latent)
return edited_img
def sample_loop(self, x,guidance_scale,noisy_latent):
with torch.autocast(device_type='cuda', dtype=torch.float32):
for i, t in enumerate(self.scheduler.timesteps, desc="Sampling"):
x = self.denoise_step(x, t,guidance_scale,noisy_latent[-1-i])
decoded_latent = self.decode_latent(x)
return decoded_latent
model_key = "runwayml/stable-diffusion-v1-5"
toy_scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
toy_scheduler.set_timesteps(NUM_DDIM_STEPS)
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=NUM_DDIM_STEPS,
strength=1.0,
device=device)
model = Preprocess(device, model_key=model_key)
pnp = PNP(model_key)
def edit_image_ddim_PnP(
image_path,
prompt_src,
prompt_tar,
guidance_scale=7.5,
image_shape=[512,512]
):
torch.cuda.empty_cache()
image_gt = load_512(image_path)
_, rgb_reconstruction, latent_reconstruction = model.extract_latents(data_path=image_path,
num_steps=NUM_DDIM_STEPS,
inversion_prompt=prompt_src)
edited_image=pnp.run_pnp(image_path,latent_reconstruction,prompt_tar,guidance_scale)
image_instruct = txt_draw(f"source prompt: {prompt_src}\ntarget prompt: {prompt_tar}")
return Image.fromarray(np.concatenate((
image_instruct,
image_gt,
np.uint8(255*np.array(rgb_reconstruction[0].permute(1,2,0).cpu().detach())),
np.uint8(255*np.array(edited_image[0].permute(1,2,0).cpu().detach())),
),1))
def edit_image_directinversion_PnP(
image_path,
prompt_src,
prompt_tar,
guidance_scale=7.5,
image_shape=[512,512]
):
torch.cuda.empty_cache()
image_gt = load_512(image_path)
inverted_x, rgb_reconstruction, _ = model.extract_latents(data_path=image_path,
num_steps=NUM_DDIM_STEPS,
inversion_prompt=prompt_src)
edited_image=pnp.run_pnp(image_path,inverted_x,prompt_tar,guidance_scale)
image_instruct = txt_draw(f"source prompt: {prompt_src}\ntarget prompt: {prompt_tar}")
return Image.fromarray(np.concatenate((
image_instruct,
image_gt,
np.uint8(np.array(latent2image(model=pnp.vae, latents=inverted_x[1].to(pnp.vae.dtype))[0])),
np.uint8(255*np.array(edited_image[0].permute(1,2,0).cpu().detach())),
),1))
def mask_decode(encoded_mask,image_shape=[512,512]):
length=image_shape[0]*image_shape[1]
mask_array=np.zeros((length,))
for i in range(0,len(encoded_mask),2):
splice_len=min(encoded_mask[i+1],length-encoded_mask[i])
for j in range(splice_len):
mask_array[encoded_mask[i]+j]=1
mask_array=mask_array.reshape(image_shape[0], image_shape[1])
# to avoid annotation errors in boundary
mask_array[0,:]=1
mask_array[-1,:]=1
mask_array[:,0]=1
mask_array[:,-1]=1
return mask_array
image_save_paths={
"ddim+pnp":"ddim+pnp",
"directinversion+pnp":"directinversion+pnp",
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--rerun_exist_images', action= "store_true") # rerun existing images
parser.add_argument('--data_path', type=str, default="data") # the editing category that needed to run
parser.add_argument('--output_path', type=str, default="output") # the editing category that needed to run
parser.add_argument('--edit_category_list', nargs = '+', type=str, default=["0","1","2","3","4","5","6","7","8","9"]) # the editing category that needed to run
parser.add_argument('--edit_method_list', nargs = '+', type=str, default=["ddim+pnp","directinversion+pnp"]) # the editing methods that needed to run
args = parser.parse_args()
rerun_exist_images=args.rerun_exist_images
data_path=args.data_path
output_path=args.output_path
edit_category_list=args.edit_category_list
edit_method_list=args.edit_method_list
with open(f"{data_path}/mapping_file.json", "r") as f:
editing_instruction = json.load(f)
for key, item in editing_instruction.items():
if item["editing_type_id"] not in edit_category_list:
continue
original_prompt = item["original_prompt"].replace("[", "").replace("]", "")
editing_prompt = item["editing_prompt"].replace("[", "").replace("]", "")
image_path = os.path.join(f"{data_path}/annotation_images", item["image_path"])
editing_instruction = item["editing_instruction"]
blended_word = item["blended_word"].split(" ") if item["blended_word"] != "" else []
mask = Image.fromarray(np.uint8(mask_decode(item["mask"])[:,:,np.newaxis].repeat(3,2))).convert("L")
for edit_method in edit_method_list:
present_image_save_path=image_path.replace(data_path, os.path.join(output_path,image_save_paths[edit_method]))
if ((not os.path.exists(present_image_save_path)) or rerun_exist_images):
print(f"editing image [{image_path}] with [{edit_method}]")
setup_seed()
torch.cuda.empty_cache()
if edit_method=="ddim+pnp":
edited_image = edit_image_ddim_PnP(
image_path=image_path,
prompt_src=original_prompt,
prompt_tar=editing_prompt,
guidance_scale=7.5,
)
elif edit_method=="directinversion+pnp":
edited_image = edit_image_directinversion_PnP(
image_path=image_path,
prompt_src=original_prompt,
prompt_tar=editing_prompt,
guidance_scale=7.5,
)
else:
raise NotImplementedError(f"No edit method named {edit_method}")
if not os.path.exists(os.path.dirname(present_image_save_path)):
os.makedirs(os.path.dirname(present_image_save_path))
edited_image.save(present_image_save_path)
print(f"finish")
else:
print(f"skip image [{image_path}] with [{edit_method}]")