-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
933 lines (828 loc) · 45.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
#!/usr/bin/env python3
""" End-to-End SAT solver Training Script
This is intended to be a lean and easily modifiable End-to-End SAT solver training script that reproduces SAT
training results with some of the latest networks and training techniques. It favours canonical PyTorch
and standard Python style over trying to be able to 'do it all.' That said, it offers quite a few speed
and training result improvements over the usual PyTorch example scripts. Repurpose as you see fit.
This script was started from an early version of the PyTorch ImageNet example
(https://github.com/pytorch/examples/tree/master/imagenet)
NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples
(https://github.com/NVIDIA/apex/tree/master/examples/imagenet)
Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman)
Modified by Lee Man to support SAT Benchmarking (https://github.com/lee-man)
NOTE: I comment the lines we do not need for now (instead of deleting them directly) and will check whether we should add those functionalities later.
"""
import argparse
import logging
import os
import time
from collections import OrderedDict
from contextlib import suppress
from datetime import datetime
import torch
import torch.nn as nn
import torchvision.utils
import yaml
from torch.nn.parallel import DistributedDataParallel as NativeDDP
# To be modified
# from timm import utils
# from timm.data import create_dataset, create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset
# from timm.loss import JsdCrossEntropy, SoftTargetCrossEntropy, BinaryCrossEntropy, \
# LabelSmoothingCrossEntropy
# from timm.models import create_model, safe_model_name, resume_checkpoint, load_checkpoint, \
# convert_splitbn_model, convert_sync_batchnorm, model_parameters, set_fast_norm
# from timm.optim import create_optimizer_v2, optimizer_kwargs
# from timm.scheduler import create_scheduler
# from timm.utils import ApexScaler, NativeScaler
# satb
from satb import utils
from satb.data import create_dataset, create_loader #, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset
from satb.loss import JsdCrossEntropy, SoftTargetCrossEntropy, BinaryCrossEntropy, \
LabelSmoothingCrossEntropy, SmoothStep
from torch.nn import L1Loss, SmoothL1Loss, MSELoss, BCELoss, BCEWithLogitsLoss, CrossEntropyLoss
from satb.models import create_model, safe_model_name, resume_checkpoint, \
model_parameters
from satb.optim import create_optimizer_v2, optimizer_kwargs
from satb.scheduler import create_scheduler
from satb.utils import ApexScaler, NativeScaler, metrics
try:
from apex import amp
from apex.parallel import DistributedDataParallel as ApexDDP
from apex.parallel import convert_syncbn_model
has_apex = True
except ImportError:
has_apex = False
has_native_amp = False
try:
if getattr(torch.cuda.amp, 'autocast') is not None:
has_native_amp = True
except AttributeError:
pass
try:
import wandb
has_wandb = True
except ImportError:
has_wandb = False
try:
from functorch.compile import memory_efficient_fusion
has_functorch = True
except ImportError as e:
has_functorch = False
torch.backends.cudnn.benchmark = True
_logger = logging.getLogger('train')
# The first arg parser parses out only the --config argument, this argument is used to
# load a yaml file containing key-values that override the defaults for the main parser below
config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False)
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments')
parser = argparse.ArgumentParser(description='PyTorch SAT Solver Training')
# Dataset parameters
group = parser.add_argument_group('Dataset parameters')
# Keep this argument outside of the dataset group because it is positional.
parser.add_argument('data_dir', metavar='DIR',
help='path to dataset')
group.add_argument('--dataset', '-d', metavar='NAME', default='',
help='dataset type (default: ImageFolder/ImageTar if empty)')
# group.add_argument('--train-split', metavar='NAME', default='train',
# help='dataset train split (default: train)')
# group.add_argument('--val-split', metavar='NAME', default='validation',
# help='dataset validation split (default: validation)')
# group.add_argument('--dataset-download', action='store_true', default=False,
# help='Allow download of dataset for torch/ and tfds/ datasets that support it.')
# group.add_argument('--class-map', default='', type=str, metavar='FILENAME',
# help='path to class to idx mapping file (default: "")')
group.add_argument('--trainval-split', default=0.9, type=float,
help='the splitting setting training dataset and validation dataset.')
# Model parameters
group = parser.add_argument_group('Model parameters')
group.add_argument('--model', default='deepsat', type=str, metavar='MODEL',
help='Name of model to train (default: "deepsat"')
group.add_argument('--pretrained', action='store_true', default=False,
help='Start with pretrained version of specified network (if avail)')
group.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH',
help='Initialize model from this checkpoint (default: none)')
group.add_argument('--resume', default='', type=str, metavar='PATH',
help='Resume full model and optimizer state from checkpoint (default: none)')
group.add_argument('--no-resume-opt', action='store_true', default=False,
help='prevent resume of optimizer state when resuming model')
# group.add_argument('--num-classes', type=int, default=None, metavar='N',
# help='number of label classes (Model default if None)')
# group.add_argument('--gp', default=None, type=str, metavar='POOL',
# help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
# group.add_argument('--img-size', type=int, default=None, metavar='N',
# help='Image patch size (default: None => model default)')
# group.add_argument('--input-size', default=None, nargs=3, type=int,
# metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
# group.add_argument('--crop-pct', default=None, type=float,
# metavar='N', help='Input image center crop percent (for validation only)')
# group.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
# help='Override mean pixel value of dataset')
# group.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
# help='Override std deviation of dataset')
# group.add_argument('--interpolation', default='', type=str, metavar='NAME',
# help='Image resize interpolation type (overrides model)')
group.add_argument('-b', '--batch-size', type=int, default=128, metavar='N',
help='Input batch size for training (default: 128)')
group.add_argument('-vb', '--validation-batch-size', type=int, default=None, metavar='N',
help='Validation batch size override (default: None)')
group.add_argument('--channels-last', action='store_true', default=False,
help='Use channels_last memory layout')
scripting_group = group.add_mutually_exclusive_group()
scripting_group.add_argument('--torchscript', dest='torchscript', action='store_true',
help='torch.jit.script the full model')
scripting_group.add_argument('--aot-autograd', default=False, action='store_true',
help="Enable AOT Autograd support. (It's recommended to use this option with `--fuser nvfuser` together)")
# group.add_argument('--fuser', default='', type=str,
# help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')")
# group.add_argument('--fast-norm', default=False, action='store_true',
# help='enable experimental fast-norm')
group.add_argument('--grad-checkpointing', action='store_true', default=False,
help='Enable gradient checkpointing through model blocks/stages')
# Optimizer parameters
group = parser.add_argument_group('Optimizer parameters')
group.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "sgd"')
group.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: None, use opt default)')
group.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
group.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='Optimizer momentum (default: 0.9)')
group.add_argument('--weight-decay', type=float, default=2e-5,
help='weight decay (default: 2e-5)')
group.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
group.add_argument('--clip-mode', type=str, default='norm',
help='Gradient clipping mode. One of ("norm", "value", "agc")')
group.add_argument('--layer-decay', type=float, default=None,
help='layer-wise learning rate decay (default: None)')
# Learning rate schedule parameters
group = parser.add_argument_group('Learning rate schedule parameters')
group.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "step"')
group.add_argument('--lr', type=float, default=0.05, metavar='LR',
help='learning rate (default: 0.05)')
group.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
group.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
group.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
group.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT',
help='learning rate cycle len multiplier (default: 1.0)')
group.add_argument('--lr-cycle-decay', type=float, default=0.5, metavar='MULT',
help='amount to decay each learning rate cycle (default: 0.5)')
group.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N',
help='learning rate cycle limit, cycles enabled if > 1')
group.add_argument('--lr-k-decay', type=float, default=1.0,
help='learning rate k-decay for cosine/poly (default: 1.0)')
group.add_argument('--warmup-lr', type=float, default=0.0001, metavar='LR',
help='warmup learning rate (default: 0.0001)')
group.add_argument('--min-lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
group.add_argument('--epochs', type=int, default=300, metavar='N',
help='number of epochs to train (default: 300)')
group.add_argument('--epoch-repeats', type=float, default=0., metavar='N',
help='epoch repeat multiplier (number of times to repeat dataset epoch per train epoch).')
group.add_argument('--start-epoch', default=None, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
group.add_argument('--decay-milestones', default=[30, 60], type=int, nargs='+', metavar="MILESTONES",
help='list of decay epoch indices for multistep lr. must be increasing')
group.add_argument('--decay-epochs', type=float, default=100, metavar='N',
help='epoch interval to decay LR')
group.add_argument('--warmup-epochs', type=int, default=3, metavar='N',
help='epochs to warmup LR, if scheduler supports')
group.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
group.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
group.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation & regularization parameters
group = parser.add_argument_group('Augmentation and regularization parameters')
# group.add_argument('--no-aug', action='store_true', default=False,
# help='Disable all training augmentation, override other train aug args')
# group.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT',
# help='Random resize scale (default: 0.08 1.0)')
# group.add_argument('--ratio', type=float, nargs='+', default=[3./4., 4./3.], metavar='RATIO',
# help='Random resize aspect ratio (default: 0.75 1.33)')
# group.add_argument('--hflip', type=float, default=0.5,
# help='Horizontal flip training aug probability')
# group.add_argument('--vflip', type=float, default=0.,
# help='Vertical flip training aug probability')
# group.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
# help='Color jitter factor (default: 0.4)')
# group.add_argument('--aa', type=str, default=None, metavar='NAME',
# help='Use AutoAugment policy. "v0" or "original". (default: None)'),
# group.add_argument('--aug-repeats', type=float, default=0,
# help='Number of augmentation repetitions (distributed training only) (default: 0)')
# group.add_argument('--aug-splits', type=int, default=0,
# help='Number of augmentation splits (default: 0, valid: 0 or >=2)')
# group.add_argument('--jsd-loss', action='store_true', default=False,
# help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.')
# group.add_argument('--bce-loss', action='store_true', default=False,
# help='Enable BCE loss w/ Mixup/CutMix use.')
# group.add_argument('--bce-target-thresh', type=float, default=None,
# help='Threshold for binarizing softened BCE targets (default: None, disabled)')
group.add_argument('--bce-loss', action='store_true', default=False,
help='Enable BCE loss for NeuroSAT.')
group.add_argument('--smooth-step-loss', action='store_true', default=False,
help='Enable SmoothStep loss for DGDAGRNN.')
group.add_argument('--l1-loss', action='store_true', default=False,
help='Enable l1 loss for DeepSAT.')
# group.add_argument('--reprob', type=float, default=0., metavar='PCT',
# help='Random erase prob (default: 0.)')
# group.add_argument('--remode', type=str, default='pixel',
# help='Random erase mode (default: "pixel")')
# group.add_argument('--recount', type=int, default=1,
# help='Random erase count (default: 1)')
# group.add_argument('--resplit', action='store_true', default=False,
# help='Do not random erase first (clean) augmentation split')
# group.add_argument('--mixup', type=float, default=0.0,
# help='mixup alpha, mixup enabled if > 0. (default: 0.)')
# group.add_argument('--cutmix', type=float, default=0.0,
# help='cutmix alpha, cutmix enabled if > 0. (default: 0.)')
# group.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
# help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
# group.add_argument('--mixup-prob', type=float, default=1.0,
# help='Probability of performing mixup or cutmix when either/both is enabled')
# group.add_argument('--mixup-switch-prob', type=float, default=0.5,
# help='Probability of switching to cutmix when both mixup and cutmix enabled')
# group.add_argument('--mixup-mode', type=str, default='batch',
# help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# group.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N',
# help='Turn off mixup after this epoch, disabled if 0 (default: 0)')
group.add_argument('--smoothing', type=float, default=0.1,
help='Label smoothing (default: 0.1)')
# group.add_argument('--train-interpolation', type=str, default='random',
# help='Training interpolation (random, bilinear, bicubic default: "random")')
group.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
group.add_argument('--drop-connect', type=float, default=None, metavar='PCT',
help='Drop connect rate, DEPRECATED, use drop-path (default: None)')
group.add_argument('--drop-path', type=float, default=None, metavar='PCT',
help='Drop path rate (default: None)')
group.add_argument('--drop-block', type=float, default=None, metavar='PCT',
help='Drop block rate (default: None)')
# Batch norm parameters (only works with gen_efficientnet based models currently)
# group = parser.add_argument_group('Batch norm parameters', 'Only works with gen_efficientnet based models currently.')
# group.add_argument('--bn-momentum', type=float, default=None,
# help='BatchNorm momentum override (if not None)')
# group.add_argument('--bn-eps', type=float, default=None,
# help='BatchNorm epsilon override (if not None)')
# group.add_argument('--sync-bn', action='store_true',
# help='Enable NVIDIA Apex or Torch synchronized BatchNorm.')
# group.add_argument('--dist-bn', type=str, default='reduce',
# help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")')
# group.add_argument('--split-bn', action='store_true',
# help='Enable separate BN layers per augmentation split.')
# Model Exponential Moving Average
# group = parser.add_argument_group('Model exponential moving average parameters')
# group.add_argument('--model-ema', action='store_true', default=False,
# help='Enable tracking moving average of model weights')
# group.add_argument('--model-ema-force-cpu', action='store_true', default=False,
# help='Force ema to be tracked on CPU, rank=0 node only. Disables EMA validation.')
# group.add_argument('--model-ema-decay', type=float, default=0.9998,
# help='decay factor for model weights moving average (default: 0.9998)')
# Misc
group = parser.add_argument_group('Miscellaneous parameters')
group.add_argument('--seed', type=int, default=42, metavar='S',
help='random seed (default: 42)')
group.add_argument('--worker-seeding', type=str, default='all',
help='worker seed mode (default: all)')
group.add_argument('--log-interval', type=int, default=50, metavar='N',
help='how many batches to wait before logging training status')
group.add_argument('--recovery-interval', type=int, default=0, metavar='N',
help='how many batches to wait before writing recovery checkpoint')
group.add_argument('--checkpoint-hist', type=int, default=10, metavar='N',
help='number of checkpoints to keep (default: 10)')
group.add_argument('-j', '--workers', type=int, default=4, metavar='N',
help='how many training processes to use (default: 4)')
group.add_argument('--save-images', action='store_true', default=False,
help='save images of input bathes every log interval for debugging')
group.add_argument('--amp', action='store_true', default=False,
help='use NVIDIA Apex AMP or Native AMP for mixed precision training')
group.add_argument('--apex-amp', action='store_true', default=False,
help='Use NVIDIA Apex AMP mixed precision')
group.add_argument('--native-amp', action='store_true', default=False,
help='Use Native Torch AMP mixed precision')
group.add_argument('--no-ddp-bb', action='store_true', default=False,
help='Force broadcast buffers for native DDP to off.')
group.add_argument('--pin-mem', action='store_true', default=False,
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
# group.add_argument('--no-prefetcher', action='store_true', default=False,
# help='disable fast prefetcher')
group.add_argument('--output', default='', type=str, metavar='PATH',
help='path to output folder (default: none, current dir)')
group.add_argument('--experiment', default='', type=str, metavar='NAME',
help='name of train experiment, name of sub-folder for output')
group.add_argument('--eval-metric', default='acc', type=str, metavar='EVAL_METRIC',
help='Best metric (default: "acc"')
# group.add_argument('--tta', type=int, default=0, metavar='N',
# help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)')
group.add_argument("--local_rank", default=0, type=int)
# group.add_argument('--use-multi-epochs-loader', action='store_true', default=False,
# help='use the multi-epochs-loader to save time at the beginning of every epoch')
group.add_argument('--log-wandb', action='store_true', default=False,
help='log training and validation metrics to wandb')
def _parse_args():
# Do we have a config file to parse?
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
# Cache the args as a text string to save them in the output dir later
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
return args, args_text
def main():
utils.setup_default_logging()
args, args_text = _parse_args()
# args.prefetcher = not args.no_prefetcher
args.distributed = False
if 'WORLD_SIZE' in os.environ:
args.distributed = int(os.environ['WORLD_SIZE']) > 1
args.device = 'cuda:0'
args.world_size = 1
args.rank = 0 # global rank
if args.distributed:
if 'LOCAL_RANK' in os.environ:
args.local_rank = int(os.getenv('LOCAL_RANK'))
args.device = 'cuda:%d' % args.local_rank
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
args.world_size = torch.distributed.get_world_size()
args.rank = torch.distributed.get_rank()
_logger.info('Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
% (args.rank, args.world_size))
else:
_logger.info('Training with a single process on 1 GPUs.')
assert args.rank >= 0
if args.rank == 0 and args.log_wandb:
if has_wandb:
wandb.init(project=args.experiment, config=args)
else:
_logger.warning("You've requested to log metrics to wandb but package not found. "
"Metrics not being logged to wandb, try `pip install wandb`")
# resolve AMP arguments based on PyTorch / Apex availability
use_amp = None
if args.amp:
# `--amp` chooses native amp before apex (APEX ver not actively maintained)
if has_native_amp:
args.native_amp = True
elif has_apex:
args.apex_amp = True
if args.apex_amp and has_apex:
use_amp = 'apex'
elif args.native_amp and has_native_amp:
use_amp = 'native'
elif args.apex_amp or args.native_amp:
_logger.warning("Neither APEX or native Torch AMP is available, using float32. "
"Install NVIDA apex or upgrade to PyTorch 1.6")
utils.random_seed(args.seed, args.rank)
# if args.fuser:
# utils.set_jit_fuser(args.fuser)
# if args.fast_norm:
# set_fast_norm()
model = create_model(
args.model,
pretrained=args.pretrained,
# num_classes=args.num_classes,
# drop_rate=args.drop,
# drop_connect_rate=args.drop_connect, # DEPRECATED, use drop_path
# drop_path_rate=args.drop_path,
# drop_block_rate=args.drop_block,
# global_pool=args.gp,
# bn_momentum=args.bn_momentum,
# bn_eps=args.bn_eps,
# scriptable=args.torchscript,
checkpoint_path=args.initial_checkpoint)
# if args.num_classes is None:
# assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.'
# args.num_classes = model.num_classes # FIXME handle model default vs config num_classes more elegantly
# FIXME: enable gradient checking in SAT models.
# if args.grad_checkpointing:
# model.set_grad_checkpointing(enable=True)
if args.local_rank == 0:
_logger.info(
f'Model {safe_model_name(args.model)} created, param count:{sum([m.numel() for m in model.parameters()])}')
# data_config = resolve_data_config(vars(args), model=model, verbose=args.local_rank == 0)
# mli: NOTE: may add this part later.
# setup augmentation batch splits for contrastive loss or split bn
# num_aug_splits = 0
# if args.aug_splits > 0:
# assert args.aug_splits > 1, 'A split of 1 makes no sense'
# num_aug_splits = args.aug_splits
# enable split bn (separate bn stats per batch-portion)
# if args.split_bn:
# assert num_aug_splits > 1 or args.resplit
# model = convert_splitbn_model(model, max(num_aug_splits, 2))
# move model to GPU, enable channels last layout if set
model.cuda()
# if args.channels_last:
# model = model.to(memory_format=torch.channels_last)
# setup synchronized BatchNorm for distributed training
# if args.distributed and args.sync_bn:
# args.dist_bn = '' # disable dist_bn when sync BN active
# assert not args.split_bn
# if has_apex and use_amp == 'apex':
# # Apex SyncBN used with Apex AMP
# # WARNING this won't currently work with models using BatchNormAct2d
# model = convert_syncbn_model(model)
# else:
# model = convert_sync_batchnorm(model)
# if args.local_rank == 0:
# _logger.info(
# 'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
# 'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.')
# if args.torchscript:
# assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
# assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
# model = torch.jit.script(model)
# if args.aot_autograd:
# assert has_functorch, "functorch is needed for --aot-autograd"
# model = memory_efficient_fusion(model)
optimizer = create_optimizer_v2(model, **optimizer_kwargs(cfg=args))
# setup automatic mixed-precision (AMP) loss scaling and op casting
amp_autocast = suppress # do nothing
loss_scaler = None
if use_amp == 'apex':
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
loss_scaler = ApexScaler()
if args.local_rank == 0:
_logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
elif use_amp == 'native':
amp_autocast = torch.cuda.amp.autocast
loss_scaler = NativeScaler()
if args.local_rank == 0:
_logger.info('Using native Torch AMP. Training in mixed precision.')
else:
if args.local_rank == 0:
_logger.info('AMP not enabled. Training in float32.')
# optionally resume from a checkpoint
resume_epoch = None
if args.resume:
resume_epoch = resume_checkpoint(
model, args.resume,
optimizer=None if args.no_resume_opt else optimizer,
loss_scaler=None if args.no_resume_opt else loss_scaler,
log_info=args.local_rank == 0)
# setup exponential moving average of model weights, SWA could be used here too
# model_ema = None
# if args.model_ema:
# # Important to create EMA model after cuda(), DP wrapper, and AMP but before DDP wrapper
# model_ema = utils.ModelEmaV2(
# model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else None)
# if args.resume:
# load_checkpoint(model_ema.module, args.resume, use_ema=True)
# setup distributed training
if args.distributed:
if has_apex and use_amp == 'apex':
# Apex DDP preferred unless native amp is activated
if args.local_rank == 0:
_logger.info("Using NVIDIA APEX DistributedDataParallel.")
model = ApexDDP(model, delay_allreduce=True)
else:
if args.local_rank == 0:
_logger.info("Using native Torch DistributedDataParallel.")
model = NativeDDP(model, device_ids=[args.local_rank], broadcast_buffers=not args.no_ddp_bb)
# NOTE: EMA model does not need to be wrapped by DDP
# setup learning rate schedule and starting epoch
lr_scheduler, num_epochs = create_scheduler(args, optimizer)
start_epoch = 0
if args.start_epoch is not None:
# a specified start_epoch will always override the resume epoch
start_epoch = args.start_epoch
elif resume_epoch is not None:
start_epoch = resume_epoch
if lr_scheduler is not None and start_epoch > 0:
lr_scheduler.step(start_epoch)
if args.local_rank == 0:
_logger.info('Scheduled epochs: {}'.format(num_epochs))
# create the train and eval datasets
# dataset_train = create_dataset(
# args.dataset, root=args.data_dir, split=args.train_split, is_training=True,
# class_map=args.class_map,
# download=args.dataset_download,
# batch_size=args.batch_size,
# repeats=args.epoch_repeats)
# dataset_eval = create_dataset(
# args.dataset, root=args.data_dir, split=args.val_split, is_training=False,
# class_map=args.class_map,
# download=args.dataset_download,
# batch_size=args.batch_size)
dataset_train, dataset_eval = create_dataset(
args.dataset, root=args.data_dir, split=args.trainval_split) #, is_training=True,
# class_map=args.class_map,
# download=args.dataset_download,
# batch_size=args.batch_size,
# repeats=args.epoch_repeats)
# setup mixup / cutmix
collate_fn = None
# mixup_fn = None
# mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
# if mixup_active:
# mixup_args = dict(
# mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
# prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
# label_smoothing=args.smoothing, num_classes=args.num_classes)
# if args.prefetcher:
# # assert not num_aug_splits # collate conflict (need to support deinterleaving in collate mixup)
# collate_fn = FastCollateMixup(**mixup_args)
# else:
# mixup_fn = Mixup(**mixup_args)
# wrap dataset in AugMix helper
# if num_aug_splits > 1:
# dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)
# create data loaders w/ augmentation pipeiine
# train_interpolation = args.train_interpolation
# if args.no_aug or not train_interpolation:
# train_interpolation = data_config['interpolation']
loader_train = create_loader(
dataset_train,
# input_size=data_config['input_size'],
batch_size=args.batch_size,
is_training=True,
# use_prefetcher=args.prefetcher,
# no_aug=args.no_aug,
# re_prob=args.reprob,
# re_mode=args.remode,
# re_count=args.recount,
# re_split=args.resplit,
# scale=args.scale,
# ratio=args.ratio,
# hflip=args.hflip,
# vflip=args.vflip,
# color_jitter=args.color_jitter,
# auto_augment=args.aa,
# num_aug_repeats=args.aug_repeats,
# num_aug_splits=num_aug_splits,
# interpolation=train_interpolation,
# mean=data_config['mean'],
# std=data_config['std'],
num_workers=args.workers,
distributed=args.distributed,
collate_fn=collate_fn,
pin_memory=args.pin_mem,
# use_multi_epochs_loader=args.use_multi_epochs_loader,
worker_seeding=args.worker_seeding,
)
loader_eval = create_loader(
dataset_eval,
# input_size=data_config['input_size'],
batch_size=args.validation_batch_size or args.batch_size,
is_training=False,
# use_prefetcher=args.prefetcher,
# interpolation=data_config['interpolation'],
# mean=data_config['mean'],
# std=data_config['std'],
num_workers=args.workers,
distributed=args.distributed,
# crop_pct=data_config['crop_pct'],
pin_memory=args.pin_mem,
)
# setup loss function
'''
if args.jsd_loss:
assert num_aug_splits > 1 # JSD only valid with aug splits set
train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing)
elif mixup_active:
# smoothing is handled with mixup target transform which outputs sparse, soft targets
if args.bce_loss:
train_loss_fn = BinaryCrossEntropy(target_threshold=args.bce_target_thresh)
else:
train_loss_fn = SoftTargetCrossEntropy()
elif args.smoothing:
if args.bce_loss:
train_loss_fn = BinaryCrossEntropy(smoothing=args.smoothing, target_threshold=args.bce_target_thresh)
else:
train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
train_loss_fn = nn.CrossEntropyLoss()
'''
if args.bce_loss:
train_loss_fn = BCEWithLogitsLoss()
validate_loss_fn = BCEWithLogitsLoss()
elif args.smooth_step_loss:
train_loss_fn = SmoothStep()
validate_loss_fn = SmoothStep()
elif args.l1_loss:
train_loss_fn = L1Loss()
validate_loss_fn = L1Loss()
else:
raise NotImplementedError()
train_loss_fn = train_loss_fn.cuda()
validate_loss_fn = validate_loss_fn.cuda()
# setup checkpoint saver and eval metric tracking
eval_metric = args.eval_metric
best_metric = None
best_epoch = None
saver = None
output_dir = None
if args.rank == 0:
if args.experiment:
exp_name = args.experiment
else:
exp_name = '-'.join([
datetime.now().strftime("%Y%m%d-%H%M%S"),
safe_model_name(args.model),
# str(data_config['input_size'][-1])
])
output_dir = utils.get_outdir(args.output if args.output else './output/train', exp_name)
decreasing = True if eval_metric == 'loss' else False
saver = utils.CheckpointSaver(
model=model, optimizer=optimizer, args=args, #model_ema=model_ema,
amp_scaler=loss_scaler,
checkpoint_dir=output_dir, recovery_dir=output_dir, decreasing=decreasing, max_history=args.checkpoint_hist)
with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
f.write(args_text)
try:
for epoch in range(start_epoch, num_epochs):
if args.distributed and hasattr(loader_train.sampler, 'set_epoch'):
loader_train.sampler.set_epoch(epoch)
train_metrics = train_one_epoch(
epoch, model, loader_train, optimizer, train_loss_fn, args,
lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir,
amp_autocast=amp_autocast, loss_scaler=loss_scaler)#, model_ema=model_ema, mixup_fn=mixup_fn)
# if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
# if args.local_rank == 0:
# _logger.info("Distributing BatchNorm running means and vars")
# utils.distribute_bn(model, args.world_size, args.dist_bn == 'reduce')
eval_metrics = validate(model, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast)
# if model_ema is not None and not args.model_ema_force_cpu:
# if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
# utils.distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
# ema_eval_metrics = validate(
# model_ema.module, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)')
# eval_metrics = ema_eval_metrics
if lr_scheduler is not None:
# step LR for next epoch
lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])
if output_dir is not None:
utils.update_summary(
epoch, train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'),
write_header=best_metric is None, log_wandb=args.log_wandb and has_wandb)
if saver is not None:
# save proper checkpoint with eval metric
save_metric = eval_metrics[eval_metric]
best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric)
except KeyboardInterrupt:
pass
if best_metric is not None:
_logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
def train_one_epoch(
epoch, model, loader, optimizer, loss_fn, args,
lr_scheduler=None, saver=None, output_dir=None, amp_autocast=suppress,
loss_scaler=None): #, model_ema=None, mixup_fn=None):
# if args.mixup_off_epoch and epoch >= args.mixup_off_epoch:
# if args.prefetcher and loader.mixup_enabled:
# loader.mixup_enabled = False
# elif mixup_fn is not None:
# mixup_fn.mixup_enabled = False
second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
batch_time_m = utils.AverageMeter()
data_time_m = utils.AverageMeter()
losses_m = utils.AverageMeter()
model.train()
end = time.time()
last_idx = len(loader) - 1
num_updates = epoch * len(loader)
for batch_idx, input in enumerate(loader):
last_batch = batch_idx == last_idx
data_time_m.update(time.time() - end)
# if not args.prefetcher:
input = input.cuda()
# input, target = input.cuda(), target.cuda()
# if mixup_fn is not None:
# input, target = mixup_fn(input, target)
if args.channels_last:
input = input.contiguous(memory_format=torch.channels_last)
with amp_autocast():
# output = model(input)
# loss = loss_fn(output, target)
outputs = model(input)
loss = loss_fn(outputs).mean()
if not args.distributed:
losses_m.update(loss.item(), input.size(0))
optimizer.zero_grad()
if loss_scaler is not None:
loss_scaler(
loss, optimizer,
clip_grad=args.clip_grad, clip_mode=args.clip_mode,
parameters=model_parameters(model, exclude_head='agc' in args.clip_mode),
create_graph=second_order)
else:
loss.backward(create_graph=second_order)
if args.clip_grad is not None:
utils.dispatch_clip_grad(
model_parameters(model, exclude_head='agc' in args.clip_mode),
value=args.clip_grad, mode=args.clip_mode)
optimizer.step()
# if model_ema is not None:
# model_ema.update(model)
torch.cuda.synchronize()
num_updates += 1
batch_time_m.update(time.time() - end)
if last_batch or batch_idx % args.log_interval == 0:
lrl = [param_group['lr'] for param_group in optimizer.param_groups]
lr = sum(lrl) / len(lrl)
if args.distributed:
reduced_loss = utils.reduce_tensor(loss.data, args.world_size)
losses_m.update(reduced_loss.item(), input.size(0))
if args.local_rank == 0:
_logger.info(
'Train: {} [{:>4d}/{} ({:>3.0f}%)] '
'Loss: {loss.val:#.4g} ({loss.avg:#.3g}) '
'Time: {batch_time.val:.3f}s, {rate:>7.2f}/s '
'({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) '
'LR: {lr:.3e} '
'Data: {data_time.val:.3f} ({data_time.avg:.3f})'.format(
epoch,
batch_idx, len(loader),
100. * batch_idx / last_idx,
loss=losses_m,
batch_time=batch_time_m,
rate=input.size(0) * args.world_size / batch_time_m.val,
rate_avg=input.size(0) * args.world_size / batch_time_m.avg,
lr=lr,
data_time=data_time_m))
if args.save_images and output_dir:
torchvision.utils.save_image(
input,
os.path.join(output_dir, 'train-batch-%d.jpg' % batch_idx),
padding=0,
normalize=True)
if saver is not None and args.recovery_interval and (
last_batch or (batch_idx + 1) % args.recovery_interval == 0):
saver.save_recovery(epoch, batch_idx=batch_idx)
if lr_scheduler is not None:
lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg)
end = time.time()
# end for
if hasattr(optimizer, 'sync_lookahead'):
optimizer.sync_lookahead()
return OrderedDict([('loss', losses_m.avg)])
def validate(model, loader, loss_fn, args, amp_autocast=suppress, log_suffix=''):
batch_time_m = utils.AverageMeter()
losses_m = utils.AverageMeter()
# top1_m = utils.AverageMeter()
# top5_m = utils.AverageMeter()
acc_m = utils.AverageMeter()
model.eval()
end = time.time()
last_idx = len(loader) - 1
with torch.no_grad():
for batch_idx, input in enumerate(loader):
last_batch = batch_idx == last_idx
# if not args.prefetcher:
input = input.cuda()
# target = target.cuda()
if args.channels_last:
input = input.contiguous(memory_format=torch.channels_last)
with amp_autocast():
output = model(input)
if isinstance(output, (tuple, list)):
output = output[0]
# augmentation reduction
# reduce_factor = args.tta
# if reduce_factor > 1:
# output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2)
# target = target[0:target.size(0):reduce_factor]
# loss = loss_fn(output, target)
loss = loss_fn(output).mean()
# FIXME: change the evaluation metric here.
# acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
acc = utils.accuracy_dgdagrnn(output)
if args.distributed:
reduced_loss = utils.reduce_tensor(loss.data, args.world_size)
# acc1 = utils.reduce_tensor(acc1, args.world_size)
# acc5 = utils.reduce_tensor(acc5, args.world_size)
acc = utils.reduce_tensor(acc, args.world_size)
else:
reduced_loss = loss.data
torch.cuda.synchronize()
losses_m.update(reduced_loss.item(), input.size(0))
# top1_m.update(acc1.item(), output.size(0))
# top5_m.update(acc5.item(), output.size(0))
acc_m.update(acc.item(), output.size(0))
batch_time_m.update(time.time() - end)
end = time.time()
if args.local_rank == 0 and (last_batch or batch_idx % args.log_interval == 0):
log_name = 'Test' + log_suffix
_logger.info(
'{0}: [{1:>4d}/{2}] '
'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) '
# 'Acc@1: {top1.val:>7.4f} ({top1.avg:>7.4f}) '
'Acc: {acc.val:>7.4f} ({acc.avg:>7.4f})'.format(
# 'Acc@5: {top5.val:>7.4f} ({top5.avg:>7.4f})'.format(
log_name, batch_idx, last_idx, batch_time=batch_time_m,
loss=losses_m, acc=acc_m))#top1=top1_m, top5=top5_m))
# metrics = OrderedDict([('loss', losses_m.avg), ('top1', top1_m.avg), ('top5', top5_m.avg)])
metrics = OrderedDict([('loss', losses_m.avg), ('acc', acc_m.avg)])
return metrics
if __name__ == '__main__':
main()