forked from AnonymousWu/Tensor_completion
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPoisson_als.py
197 lines (163 loc) · 6.04 KB
/
Poisson_als.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python3
import numpy as np
import numpy.linalg as la
import time
import csv
import ctf
import random
def subtract_sparse(T,M):
[inds,data] = T.read_local_nnz()
[inds,data2] = M.read_local_nnz()
new_data = data-data2
new_tensor = ctf.tensor(T.shape, sp=T.sp)
new_tensor.write(inds,new_data)
return new_tensor
def elementwise_prod(T,M):
[inds,data] = T.read_local_nnz()
[inds,data2] = M.read_local_nnz()
new_data= data2*data
new_tensor = ctf.tensor(T.shape, sp=T.sp)
new_tensor.write(inds,new_data)
return new_tensor
def elementwise_exp(T):
[inds,data] = T.read_local_nnz()
new_data = np.exp(data)
new_tensor = ctf.tensor(T.shape, sp=T.sp)
new_tensor.write(inds,new_data)
return new_tensor
def elementwise_log(T):
[inds,data] = T.read_local_nnz()
new_data = np.log(data)
new_tensor = ctf.tensor(T.shape, sp=T.sp)
new_tensor.write(inds,new_data)
return new_tensor
class Poisson_als_Completer():
#Current implementation is using \lambda = e^m and replacing it in the function to get: e^m - xm
def __init__(self,tenpy, T, Omega, A ):
self.tenpy = tenpy
self.T = T
self.Omega = Omega
self.A = A
def Get_RHS(self,num,regu):
#The gradient of the loss function is Mttkrp(e^m - x) ............... Need negative of this
M = self.tenpy.TTTP(self.Omega,self.A)
ctf.Sparse_exp(M)
#inter = subtract_sparse(self.T,M)
ctf.Sparse_add(M,self.T,alpha=-1)
#inter = self.T - M
lst_mat = []
for j in range(len(self.A)):
if j != num :
lst_mat.append(self.A[j])
else:
lst_mat.append(self.tenpy.zeros(self.A[num].shape))
self.tenpy.MTTKRP(M,lst_mat,num)
grad = lst_mat[num] - regu*self.A[num]
ctf.Sparse_add(M,self.T,alpha=-1)
#self.tenpy.printf("The norm of gradient is ",self.tenpy.vecnorm(grad))
return [grad,M]
def step(self,regu):
#Hessian would now have double derivative tensor e^m
for i in range(len(self.A)):
lst_mat = []
for j in range(len(self.A)):
if i != j :
lst_mat.append(self.A[j])
else:
lst_mat.append(self.tenpy.zeros(self.A[i].shape))
for t in range(5):
lst_mat[i] = self.tenpy.zeros(self.A[i].shape)
[g,m] = self.Get_RHS(i,regu)
if self.tenpy.name() == "numpy":
delta = self.tenpy.Solve_Factor(m,lst_mat,g,i,regu)
else:
self.tenpy.Solve_Factor(m,lst_mat,g,i,regu)
delta = lst_mat[i]
nrm = self.tenpy.vecnorm(self.A[i])
step_nrm = self.tenpy.vecnorm(delta)/nrm
#self.tenpy.printf("norm of step is ",step_nrm)
if step_nrm <= 1e-03:
#self.tenpy.printf("subiteration converged in ",t)
self.A[i] += delta
break
self.A[i] += delta
#self.tenpy.printf("Completed subiteration",i)
return self.A
def Poisson_als(tenpy, T_in, T, O, U, V, W, reg_als,I,J,K,R, num_iter_als,tol,csv_file):
opt = Poisson_als_Completer(tenpy, T_in, O, [U,V,W])
#if T_in.sp == True:
# nnz_tot = T_in.nnz_tot
#else:
# nnz_tot = ctf.sum(omega)
if tenpy.name() == 'ctf':
nnz_tot = T_in.nnz_tot
else:
nnz_tot = np.sum(O)
t_ALS = ctf.timer_epoch("poisson_als_explicit")
regu = reg_als
tenpy.printf("--------------------------------Poisson_als-----------------------------")
start= time.time()
# T_in = backend.einsum('ijk,ijk->ijk',T,O)
it = 0
time_all = 0
P = T_in.copy()
ctf.Sparse_log(P)
ctf.Sparse_mul(P,T_in)
ctf.Sparse_add(P,T_in,beta=-1)
val2 = ctf.sum(P)
if tenpy.is_master_proc():
tenpy.printf("val2 is",val2)
#val2 = ctf.sum(subtract_sparse(elementwise_prod(T_in,elementwise_log(T_in)),T_in))
M = tenpy.TTTP(O,[U,V,W])
#val = ctf.sum(subtract_sparse(ctf.exp(M),elementwise_prod(T_in,M) ))
P = M.copy()
ctf.Sparse_mul(P,T_in)
ctf.Sparse_exp(M)
#rmse_lsq = tenpy.vecnorm(T_in-M)/(nnz_tot)**0.5
#tenpy.printf("least square RMSE is",rmse_lsq)
ctf.Sparse_add(M,P,beta=-1)
val = ctf.sum(M)
P.set_zero()
M.set_zero()
rmse = (val+val2)/nnz_tot
P.set_zero()
if tenpy.is_master_proc():
tenpy.printf("After " + str(it) + " iterations,")
tenpy.printf("RMSE is",rmse)
if csv_file is not None:
csv_writer = csv.writer(
csv_file, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
for i in range(num_iter_als):
it+=1
s = time.time()
t_ALS.begin()
[U,V,W] = opt.step(regu)
t_ALS.end()
e = time.time()
time_all+= e- s
#rmse = tenpy.vecnorm(tenpy.TTTP(O,[U,V,W])-T_in)/(nnz_tot)**0.5
M = tenpy.TTTP(O,[U,V,W])
#val = ctf.sum(subtract_sparse(ctf.exp(M),elementwise_prod(T_in,M) ))
P = M.copy()
ctf.Sparse_mul(P,T_in)
ctf.Sparse_exp(M)
rmse_lsq = tenpy.vecnorm(T_in-M)/(nnz_tot)**0.5
tenpy.printf("least square RMSE is",rmse_lsq)
ctf.Sparse_add(M,P,beta=-1)
val = ctf.sum(M)
P.set_zero()
M.set_zero()
rmse = (val+val2)/nnz_tot
if tenpy.is_master_proc():
tenpy.printf("After " + str(it) + " iterations,")
tenpy.printf("RMSE is",rmse)
#print("Full Tensor Objective",(tenpy.norm(tenpy.einsum('ir,jr,kr->ijk',U,V,W)-T)))
if csv_file is not None:
csv_writer.writerow([i,time_all , rmse, i,'PALS'])
csv_file.flush()
if abs(rmse) < tol:
tenpy.printf("Ending algo due to tolerance")
break
end= time.time()
tenpy.printf('Poisson Explicit als time taken is ',end - start)
return [U,V,W]