forked from AnonymousWu/Tensor_completion
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexplicit_als.py
112 lines (91 loc) · 3.21 KB
/
explicit_als.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#!/usr/bin/env python3
import numpy as np
import numpy.linalg as la
import time
import csv
import ctf
import random
class explicit_als_Completer():
def __init__(self,tenpy, T, Omega, A ):
self.tenpy = tenpy
self.T = T
self.Omega = Omega
self.A = A
def Get_RHS(self,num):
lst_mat = []
for j in range(len(self.A)):
if j != num :
lst_mat.append(self.A[j])
else:
lst_mat.append(self.tenpy.zeros(self.A[num].shape))
self.tenpy.MTTKRP(self.T,lst_mat,num)
grad = lst_mat[num]
return grad
def step(self,regu):
for i in range(len(self.A)):
lst_mat = []
for j in range(len(self.A)):
if i != j :
lst_mat.append(self.A[j])
else:
lst_mat.append(self.tenpy.zeros(self.A[i].shape))
g = self.Get_RHS(i)
if self.tenpy.name() == "numpy":
self.A[i] = self.tenpy.Solve_Factor(self.Omega,lst_mat,g,i,regu)
else:
self.tenpy.Solve_Factor(self.Omega,lst_mat,g,i,regu)
self.A[i] = lst_mat[i]
return self.A
def explicit_als(tenpy, T_in, T, O, X, reg_als,num_iter_als,tol,csv_file):
opt = explicit_als_Completer(tenpy, T_in, O, X)
#if T_in.sp == True:
# nnz_tot = T_in.nnz_tot
#else:
# nnz_tot = ctf.sum(omega)
if tenpy.name() == 'ctf':
nnz_tot = T_in.nnz_tot
else:
nnz_tot = np.sum(O)
tenpy.printf('NNZ is',nnz_tot)
t_ALS = ctf.timer_epoch("als_explicit")
regu = reg_als
tenpy.printf("--------------------------------explicit_als-----------------------------")
start= time.time()
# T_in = backend.einsum('ijk,ijk->ijk',T,O)
it = 0
time_all = 0
M = tenpy.TTTP(O,X)
ctf.Sparse_add(M,T_in,beta=-1)
rmse = tenpy.vecnorm(M)/(nnz_tot)**0.5
if tenpy.is_master_proc():
tenpy.printf("After " + str(it) + " iterations,")
#tenpy.printf("Poisson rmse is ",rmse_poisson)
tenpy.printf("RMSE is",rmse)
if csv_file is not None:
csv_writer = csv.writer(
csv_file, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
for i in range(num_iter_als):
it+=1
s = time.time()
t_ALS.begin()
X = opt.step(regu)
t_ALS.end()
e = time.time()
time_all+= e- s
M = tenpy.TTTP(O,X)
ctf.Sparse_add(M,T_in,beta=-1)
rmse = tenpy.vecnorm(M)/(nnz_tot)**0.5
if tenpy.is_master_proc():
tenpy.printf("After " + str(it) + " iterations,")
#tenpy.printf("Poisson rmse is ",rmse_poisson)
tenpy.printf("RMSE is",rmse)
#print("Full Tensor Objective",(tenpy.norm(tenpy.einsum('ir,jr,kr->ijk',X[0],X[1],X[2])-T)))
if csv_file is not None:
csv_writer.writerow([i,time_all , rmse, i,'ALS'])
csv_file.flush()
if rmse < tol:
tenpy.printf("Ending algo due to tolerance")
break
end= time.time()
tenpy.printf('Explicit als time taken is ',end - start)
return X