-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSampler.py
138 lines (120 loc) · 5.56 KB
/
Sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import NeuralNet
from DataLoader import LoadFilesData, DataLoader
from Visualization import visualizeImages
from math import ceil, sqrt
import numpy as np
"""
Generate a sample from the network
Params
network: the neural network to sample from
sampleSize: the number of images to create
gender: optionally specify the gender(s) to generate. int, array, or None
age: optionally specify the age(s) to generate. int, array, or None
saveName: if specified, will save a visualization image grid using this name
Returns
0: a nupy array of the results generated
"""
def randomSample(network, sampleSize, gender=None, age=None, saveName=None):
if gender is not None:
genderVec = np.ones([sampleSize, 1]) * (gender != 0)
else:
genderVec = np.random.randint(2, size=sampleSize)
if age is not None:
ageVec = np.ones([sampleSize, 1]) * age
else:
ageVec = np.random.randint(15, 75, size=sampleSize)
genderVec = ((genderVec * 2) - 1).astype(np.float32).reshape([-1, 1])
ageVec = (((ageVec / 100.0) * 2) - 1).astype(np.float32).reshape([-1, 1])
noiseVec = np.random.uniform(-1, 1, [sampleSize, network.noise_size]).astype(np.float32)
samples = network.getSample(noiseVec, genderVec, ageVec)
if saveName is not None:
numRows = int(ceil(sqrt(sampleSize)))
visualizeImages(samples, numRows=numRows, fileName=saveName)
return samples
"""
Generate a visualization showing the influence of the age variable
Creates a single row, where each column shows the age value increasing
Params
network: the neural network to sample from
numAges: the number of faces to generate
minAge: the lowest age value to use
maxAge: the largest age value to use
gender: optionally specify the gender(s) to generate. int, or None
noiseArr: the noise values to use, if a specific face is desired
saveName: if specified, will save a visualization image grid using this name
Returns
0: a nupy array of the results generated
"""
def ageSample(network, numAges, minAge=25, maxAge=75, gender=None, noiseArr=None, saveName=None):
if gender is None:
gender = np.random.randint(2, size=1)
if noiseArr is None:
noiseArr = np.random.uniform(-1, 1, [1, network.noise_size]).astype(np.float32)
ageMat = (((np.linspace(minAge, maxAge, numAges, dtype=int) / 100.0) * 2) - 1).reshape([numAges, 1])
genderMat = ((np.ones([numAges, 1]) * gender) * 2) - 1
noiseMat = np.ones([numAges, network.noise_size]) * noiseArr
samples = network.getSample(noiseMat, genderMat, ageMat)
if saveName is not None:
visualizeImages(samples, numRows=1, fileName=saveName)
return samples
"""
Generate a visualization showing the influence of the age variable
Creates multiple rows, where each column shows the age value increasing
and each row is an individual face (noise value/gender)
Params
network: the neural network to sample from
numAges: the number of faces to generate
numSamples: the number of unique individuals to generate
minAge: the lowest age value to use
maxAge: the largest age value to use
gender: optionally specify the gender(s) to generate. int, or None
noiseArr: the noise values to use, if a specific face is desired
saveName: if specified, will save a visualization image grid using this name
Returns
0: a nupy array of the results generated
"""
def ageSampleMultiple(network, numAges, numSamples, minAge=25, maxAge=75, saveName=None):
combinedMat = np.zeros([numSamples*numAges, 64, 64, 3])
for i in range(numSamples):
result = ageSample(network, numAges, minAge=minAge, maxAge=maxAge, saveName=None)
combinedMat[numAges*i:numAges*(i+1),:,:,:] = result
if saveName is not None:
visualizeImages(combinedMat, numRows=numSamples, fileName=saveName)
return combinedMat
"""
Generate a visualization showing the influence of the sex variable
Creates two rows, with famles on the top row and males on the bottom,
and each column is an individual face (same noice vector and age value)
Params
network: the neural network to sample from
numSamples: the number of individuals to generate
age: optionally specify the age(s) to generate. int or None
saveName: if specified, will save a visualization image grid using this name
Returns
0: a nupy array of the results generated
"""
def sexSample(network, numSamples, age=None, saveName=None):
if age is not None:
ageVec = np.ones([numSamples, 1]) * age
else:
ageVec = np.random.randint(15, 75, size=numSamples)
ageVec = (((ageVec / 100.0) * 2) - 1).astype(np.float32).reshape([-1, 1])
noiseArr = np.random.uniform(-1, 1, [numSamples, network.noise_size]).astype(np.float32)
genderArr = np.array([0,1])
noiseArr = np.concatenate([noiseArr, noiseArr])
ageVec = np.concatenate([ageVec, ageVec])
genderArr = genderArr.repeat(numSamples).reshape(numSamples*2, 1)
samples = network.getSample(noiseArr, genderArr, ageVec)
if saveName is not None:
visualizeImages(samples, numRows=2, fileName=saveName)
return samples
if __name__ == "__main__":
# initialize the data loader
image_size = 64
batch_size = 64
noise_size = 100
# start training
network = NeuralNet.NeuralNet(batch_size=batch_size, image_size=image_size, noise_size=noise_size, learningRate=5e-4)
randomSample(network, 36, saveName="sample.png")
ageSampleMultiple(network, 10, 3, saveName="age_sample.png")
sexSample(network, 10, saveName="sex_sample.png")