forked from facebookresearch/deepmask
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainerDeepMask.lua
191 lines (160 loc) · 5.92 KB
/
TrainerDeepMask.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
--[[----------------------------------------------------------------------------
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
This source code is licensed under the BSD-style license found in the
LICENSE file in the root directory of this source tree. An additional grant
of patent rights can be found in the PATENTS file in the same directory.
Training and testing loop for DeepMask
------------------------------------------------------------------------------]]
local optim = require 'optim'
paths.dofile('trainMeters.lua')
local Trainer = torch.class('Trainer')
--------------------------------------------------------------------------------
-- function: init
function Trainer:__init(model, criterion, config)
-- training params
self.config = config
self.model = model
self.maskNet = nn.Sequential():add(model.trunk):add(model.maskBranch)
self.scoreNet = nn.Sequential():add(model.trunk):add(model.scoreBranch)
self.criterion = criterion
self.lr = config.lr
self.optimState ={}
for k,v in pairs({'trunk','mask','score'}) do
self.optimState[v] = {
learningRate = config.lr,
learningRateDecay = 0,
momentum = config.momentum,
dampening = 0,
weightDecay = config.wd,
}
end
-- params and gradparams
self.pt,self.gt = model.trunk:getParameters()
self.pm,self.gm = model.maskBranch:getParameters()
self.ps,self.gs = model.scoreBranch:getParameters()
-- allocate cuda tensors
self.inputs, self.labels = torch.CudaTensor(), torch.CudaTensor()
-- meters
self.lossmeter = LossMeter()
self.maskmeter = IouMeter(0.5,config.testmaxload*config.batch)
self.scoremeter = BinaryMeter()
-- log
self.modelsv = {model=model:clone('weight', 'bias'),config=config}
self.rundir = config.rundir
self.log = torch.DiskFile(self.rundir .. '/log', 'rw'); self.log:seekEnd()
end
--------------------------------------------------------------------------------
-- function: train
function Trainer:train(epoch, dataloader)
self.model:training()
self:updateScheduler(epoch)
self.lossmeter:reset()
local timer = torch.Timer()
local fevaltrunk = function() return self.model.trunk.output, self.gt end
local fevalmask = function() return self.criterion.output, self.gm end
local fevalscore = function() return self.criterion.output, self.gs end
for n, sample in dataloader:run() do
-- copy samples to the GPU
self:copySamples(sample)
-- forward/backward
local model, params, feval, optimState
if sample.head == 1 then
model, params = self.maskNet, self.pm
feval,optimState = fevalmask, self.optimState.mask
else
model, params = self.scoreNet, self.ps
feval,optimState = fevalscore, self.optimState.score
end
local outputs = model:forward(self.inputs)
local lossbatch = self.criterion:forward(outputs, self.labels)
model:zeroGradParameters()
local gradOutputs = self.criterion:backward(outputs, self.labels)
if sample.head == 1 then gradOutputs:mul(self.inputs:size(1)) end
model:backward(self.inputs, gradOutputs)
-- optimize
optim.sgd(fevaltrunk, self.pt, self.optimState.trunk)
optim.sgd(feval, params, optimState)
-- update loss
self.lossmeter:add(lossbatch)
end
-- write log
local logepoch =
string.format('[train] | epoch %05d | s/batch %04.2f | loss: %07.5f ',
epoch, timer:time().real/dataloader:size(),self.lossmeter:value())
print(logepoch)
self.log:writeString(string.format('%s\n',logepoch))
self.log:synchronize()
--save model
torch.save(string.format('%s/model.t7', self.rundir),self.modelsv)
if epoch%50 == 0 then
torch.save(string.format('%s/model_%d.t7', self.rundir, epoch),
self.modelsv)
end
collectgarbage()
end
--------------------------------------------------------------------------------
-- function: test
local maxacc = 0
function Trainer:test(epoch, dataloader)
self.model:evaluate()
self.maskmeter:reset()
self.scoremeter:reset()
for n, sample in dataloader:run() do
-- copy input and target to the GPU
self:copySamples(sample)
if sample.head == 1 then
local outputs = self.maskNet:forward(self.inputs)
self.maskmeter:add(outputs:view(self.labels:size()),self.labels)
else
local outputs = self.scoreNet:forward(self.inputs)
self.scoremeter:add(outputs, self.labels)
end
cutorch.synchronize()
end
self.model:training()
-- check if bestmodel so far
local z,bestmodel = self.maskmeter:value('0.7')
if z > maxacc then
torch.save(string.format('%s/bestmodel.t7', self.rundir),self.modelsv)
maxacc = z
bestmodel = true
end
-- write log
local logepoch =
string.format('[test] | epoch %05d '..
'| IoU: mean %06.2f median %06.2f [email protected] %06.2f [email protected] %06.2f '..
'| acc %06.2f | bestmodel %s',
epoch,
self.maskmeter:value('mean'),self.maskmeter:value('median'),
self.maskmeter:value('0.5'), self.maskmeter:value('0.7'),
self.scoremeter:value(), bestmodel and '*' or 'x')
print(logepoch)
self.log:writeString(string.format('%s\n',logepoch))
self.log:synchronize()
collectgarbage()
end
--------------------------------------------------------------------------------
-- function: copy inputs/labels to CUDA tensor
function Trainer:copySamples(sample)
self.inputs:resize(sample.inputs:size()):copy(sample.inputs)
self.labels:resize(sample.labels:size()):copy(sample.labels)
end
--------------------------------------------------------------------------------
-- function: update training schedule according to epoch
function Trainer:updateScheduler(epoch)
if self.lr == 0 then
local regimes = {
{ 1, 50, 1e-3, 5e-4},
{ 51, 120, 5e-4, 5e-4},
{ 121, 1e8, 1e-4, 5e-4}
}
for _, row in ipairs(regimes) do
if epoch >= row[1] and epoch <= row[2] then
for k,v in pairs(self.optimState) do
v.learningRate=row[3]; v.weightDecay=row[4]
end
end
end
end
end
return Trainer