-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_network.py
executable file
·210 lines (150 loc) · 6.83 KB
/
train_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import SimpleITK as sitk
import numpy as np
import torch
import torch.backends.cudnn
import torch.nn as nn
import torch.optim.lr_scheduler
from torch.autograd import Variable
from torch.utils.data import TensorDataset, DataLoader
torch.backends.cudnn.benchmark = True
def load_mha(mha_file):
itk = sitk.ReadImage(mha_file)
return sitk.GetArrayFromImage(itk)
def load_projections(files):
projections = [load_mha(f) for f in files]
projections = np.concatenate(projections, 0)
projections = np.pad(projections, [(0, 0), (4, 4), (4, 4)], mode="edge")
projections[projections < 0] = 0
return projections[:, np.newaxis, ...]
class ProjectionDatasSet(TensorDataset):
# Mixup
def __init__(self, data_array, target_array, distribution=np.random.rand):
super(ProjectionDatasSet, self).__init__(data_array, target_array)
self.distribution = distribution
def __getitem__(self, item):
data, target = super(ProjectionDatasSet, self).__getitem__(item)
other_item = np.random.randint(0, self.__len__())
mix = self.distribution()
data2, target2 = super(ProjectionDatasSet, self).__getitem__(other_item)
data_mixed = data * mix + data2 * (1 - mix)
target_mixed = target * mix + target2 * (1 - mix)
return data_mixed, target_mixed
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def is_Conv_type(m):
return isinstance(m, nn.Conv3d) or isinstance(m, nn.ConvTranspose3d) or isinstance(m, nn.Conv2d) or \
isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d) or \
isinstance(m, nn.Linear)
def InitModel(model):
for m in model.modules():
if is_Conv_type(m):
nn.init.orthogonal(m.weight.data)
import time
import tensorboardX
writer = tensorboardX.SummaryWriter()
use_cuda = True
def train_model(model, optimizer, dset_loaders, num_epochs=200, scheduler=None, start_epoch=0, criterion=nn.MSELoss()):
since = time.time()
batch_time = AverageMeter()
running_loss = {"val": AverageMeter(), "train": AverageMeter()}
best_model = model
best_acc = 0.0
for epoch in range(start_epoch, num_epochs):
# optimizer.update_step()
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
k = 0
for phase in ['train', 'val']:
if phase == 'train':
model.train(True) # Set model to training mode
else:
model.train(False) # Set model to evaluate mode
running_corrects = 0
i = 0
report = 200
# Iterate over data.
for data in dset_loaders[phase]:
# get the inputs
inputs, targets = data
# wrap them in Variable
if use_cuda:
inputs, targets = Variable(inputs.float().cuda(async=True)), Variable(
targets.float().cuda(async=True))
else:
inputs, targets = Variable(inputs.float()), Variable(
targets.float())
if phase == "val":
inputs.volatile = True
targets.volatile = True
# zero the parameter gradients
optimizer.zero_grad()
# forward
outputs = model(inputs)
loss = criterion(outputs, targets)
# backward + optimize only if in training phase
if phase == "train":
loss.backward()
optimizer.step()
if isinstance(criterion, nn.MSELoss):
base_loss = loss
else:
base_loss = nn.MSELoss()(torch.log(outputs), torch.log(targets))
print("Penguins were here")
print("Loss", base_loss.data[0], "Time",
time.time() - since)
batch_time.update(time.time() - since)
since = time.time()
# statistics
running_loss[phase].update(base_loss.data[0], n=outputs.size()[0])
i += 1
writer.add_scalar('Loss_' + phase, running_loss[phase].avg, epoch)
if phase == 'train':
if scheduler is not None:
scheduler.step(running_loss[phase].avg)
batch_time.reset()
for phase in ["val", "train"]:
running_loss[phase].reset()
torch.save(model.state_dict(), writer.file_writer.get_logdir() + "/model_" + str(epoch) + ".trch")
print()
writer.close()
return model
training_patients = [2, 3, 4, 5, 7, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29]
projection_files = ["NewProjections/CBCTcor" + str(k) + "/ProjectionData/CBCT_projections_rtk_binned.mha" for k in
training_patients]
corprojection_files = ["NewProjections/CBCTcor" + str(k) + "/ProjectionData/CBCT_projections_cor_CF_1.6.mha" for k in
training_patients]
test_patients = [8, 9, 10, 12, 13, 14, 15]
test_projection_files = ["NewProjections/CBCTcor" + str(k) + "/ProjectionData/CBCT_projections_rtk_binned.mha" for k in
test_patients]
test_corprojection_files = ["NewProjections/CBCTcor" + str(k) + "/ProjectionData/CBCT_projections_cor_CF_1.6.mha" for k
in test_patients]
distribution = np.random.rand
train_loader = DataLoader(TensorDataset(torch.from_numpy(load_projections(projection_files)),
torch.from_numpy(load_projections(corprojection_files))), batch_size=8,
shuffle=True, pin_memory=True)
test_loader = DataLoader(TensorDataset(torch.from_numpy(load_projections(test_projection_files)),
torch.from_numpy(load_projections(test_corprojection_files))), batch_size=8,
shuffle=False, pin_memory=True)
import ScatterNet
model = ScatterNet.ScatterNet(init_channels=8, layer_channels=[8, 16, 32, 64, 128, 256], batchnorm=False, squeeze=False,
activation=nn.PReLU, exp=False,
skip_first=False, residual=True)
InitModel(model)
torch.save(model, writer.file_writer.get_logdir() + "/base_model.trch")
dummy_data = None
if use_cuda:
model = nn.DataParallel(model).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=3e-4, weight_decay=0)
train_model(model, optimizer, {"val": test_loader, "train": train_loader}, num_epochs=10000)