-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcore.py
149 lines (108 loc) · 3.57 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from PIL import Image
import numpy as np
import cv2
from scipy import ndimage
import slidingwindow as sw
from global_const import data_dir, R, C
from multiprocessing import get_context
# Helper functions
def get_img(dirname):
im = Image.open('{}{}/{}_gec.tif'.format(data_dir, dirname, dirname))
np_img = np.asarray(im.getdata())
# restore normal FP representation, but magnified 1e5 times or it's too dark
np_img = np_img ** (3 / 2) * 1e-5
w, h = im.size
np_img.shape = (h, w)
return cv2.resize(np_img, (R, C))
def pmap(f, things):
with get_context('spawn').Pool() as p:
return np.asarray(list(p.map(f, things)))
# return np.asarray(list(map(f, things)))
# These are the steps to run on an image to generate cloud mask.
# Refer to README.md for documentation on parameters
def unsharp(image):
unsharp_kernel = np.asarray([
[0, -1, 0],
[-1, 5, -1],
[0, -1, 0]
])
return cv2.filter2D(image, -1, unsharp_kernel)
# due to problem with multiprocessing, I have to explicitly declare remove_bright_single
def remove_bright_single(x):
hi = 74 - x.mean() * 2
shape = x.shape
x = np.where(x <= hi, x, 0)
x.shape = shape
return x
def remove_bright(x):
remove_bright_window_size = 250
windows = sw.generate(x, sw.DimOrder.HeightWidthChannel, remove_bright_window_size, 0, [remove_bright_single])
for window in windows:
x[window.indices()] = window.apply(x)
return x
def average_blur(x):
ksize = 13
return cv2.blur(x, (ksize, ksize))
# due to problem with multiprocessing, I have to explicitly declare remove_dark_single
def remove_dark_single(x):
lo = 14 - x.mean() * 3
shape = x.shape
x = np.where(lo <= x, x, 0)
x.shape = shape
return x
def remove_dark(x):
remove_dark_window_size = 250
windows = sw.generate(x, sw.DimOrder.HeightWidthChannel, remove_dark_window_size, 0, [remove_dark_single])
for window in windows:
x[window.indices()] = window.apply(x)
return x
# Use if we want binary mask
def to_binary(x):
binary_threshold = 0
shape = x.shape
x = np.where(x > binary_threshold, 1, 0)
x.shape = shape
return x.astype(np.uint8)
# From https://stackoverflow.com/questions/42798659/how-to-remove-small-connected-objects-using-opencv/42812226
def remove_small_obj(img):
nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(img.astype(np.uint8), connectivity=8)
sizes = stats[1:, -1]
obj_threshold = max(np.mean(sizes), 125)
if np.isnan(obj_threshold):
obj_threshold = 125
nb_components = nb_components - 1
for i in range(0, nb_components):
if sizes[i] < obj_threshold:
img[output == i + 1] = 0
return img
def grey_dilation(x):
# gdsize = 125
gdsize = 250 # more dilation for binary mask
return ndimage.morphology.grey_dilation(x, (gdsize, gdsize))
# Use optional for binary mask
def gaussian_blur(x):
gksize = 125
gstd = 2000
return cv2.GaussianBlur(x, (gksize, gksize), gstd)
# procedure to generate greyscale cloud mask
cloud_mask_generate_procedure = [
unsharp,
remove_bright,
average_blur,
remove_dark,
# to_binary, # if we want binary mask
remove_small_obj,
grey_dilation,
gaussian_blur # if not binary mask
]
# procedure to generate binary cloud mask
cloud_mask_generate_procedure_binary = [
unsharp,
remove_bright,
average_blur,
remove_dark,
to_binary, # if we want binary mask
remove_small_obj,
grey_dilation,
# gaussian_blur # if not binary mask
]