-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy patheval_multigpu.py
92 lines (79 loc) · 4.01 KB
/
eval_multigpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import json
import argparse
from torch import device
from benchmarks import *
import os
from esft import load_base_model, add_adapter
import torch.multiprocessing as mp
from itertools import accumulate
from accelerate import dispatch_model
from transformers import AutoModelForCausalLM, AutoTokenizer
def infer_auto_device_map(model, pp_splits, visible_devices):
assert len(pp_splits) == len(visible_devices)
device_map = {
"model.embed_tokens": 0,
"model.norm": len(pp_splits) - 1,
"lm_head": len(pp_splits) - 1
}
assert len(model.model.layers) == sum(pp_splits)
pp_splits = [0, *list(accumulate(pp_splits))]
for idx, (start, end) in enumerate(zip(pp_splits[:-1], pp_splits[1:])):
for i in range(start, end):
device_map.update({f"model.layers.{i}": idx})
for k, v in device_map.items():
device_map[k] = visible_devices[v]
return device_map
def eval_model(rank, args, model, dataset):
config = {
"max_new_tokens": args.max_new_tokens,
"eval_batch_size": args.eval_batch_size,
"openai_api_key": args.openai_api_key
}
evaluator_map = {
"intent": IntentEvaluator,
"summary": SummaryEvaluator,
"law": LawEvaluator,
"translation": TranslationEvaluator
}
try:
evaluator_cls = evaluator_map[args.eval_dataset]
print(f"Rank {rank} starting evaluation...", flush=True)
tokenizer = AutoTokenizer.from_pretrained(args.base_model_path)
visible_devices = list(range(rank * args.gpus_per_rank, (rank + 1) * args.gpus_per_rank))
device_map = infer_auto_device_map(model, [14, 13], visible_devices)
model = dispatch_model(model, device_map)
cur_dataset = dataset[rank::args.world_size]
evaluator = evaluator_cls(cur_dataset, config)
with torch.no_grad():
results, metrics = evaluator.evaluate(model, tokenizer)
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
with open(args.output_path + f".rank_{rank}", "w") as f:
for res, m in zip(results, metrics):
obj = {
"example": res,
"score": m
}
f.write(json.dumps(obj, ensure_ascii=False) + "\n")
except Exception as e:
print(f"Error in process {rank}: {e}", flush=True)
raise
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Evaluate a model with adapters on a specified dataset.")
parser.add_argument("--eval_dataset", type=str, required=True, help="Name of the evaluation dataset")
parser.add_argument("--base_model_path", type=str, required=True, help="Path to the base model")
parser.add_argument("--adapter_dir", type=str, required=True, help="Directory containing the adapter")
parser.add_argument("--output_path", type=str, required=True, help="Path to save the evaluation results")
parser.add_argument("--max_new_tokens", type=int, default=128, help="Maximum number of new tokens")
parser.add_argument("--openai_api_key", type=str, required=True, help="API key for OpenAI")
parser.add_argument("--eval_batch_size", type=int, default=1, help="Batch size for evaluation")
parser.add_argument("--world_size", type=int, default=4, help="Number of processes to use for evaluation")
parser.add_argument("--gpus_per_rank", type=int, default=2, help="Number of GPUs per process")
args = parser.parse_args()
print("Loading base model...")
model = AutoModelForCausalLM.from_pretrained(args.base_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16) # not using tokenizer here to aviod deadlock
print(f"Running evaluation on {args.eval_dataset}...")
dataset = [json.loads(i) for i in open(f"datasets/eval/{args.eval_dataset}.jsonl").readlines()]
print("Adding adapter...")
model = add_adapter(model, args.adapter_dir, return_original_states=False)
print("Start Evaluating...")
mp.spawn(eval_model, args=(args, model, dataset), nprocs=args.world_size, join=True)