forked from crypto-agda/crypto-agda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsum-setoid.agda
377 lines (292 loc) · 14.6 KB
/
sum-setoid.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import Level as L
open import Type
open import Function
open import Algebra
open import Algebra.FunctionProperties.NP
open import Data.Nat.NP hiding (_^_)
open import Data.Nat.Properties
open import Data.Unit hiding (_≤_)
open import Data.Sum
open import Data.Maybe.NP
open import Data.Product
open import Data.Bits
open import Data.Empty
open import Data.Bool.NP as Bool
import Function.Equality as FE
open FE using (_⟨$⟩_ ; ≡-setoid)
import Function.Injection as Finj
import Function.Inverse as FI
open FI using (_↔_; module Inverse)
open import Function.LeftInverse using (_RightInverseOf_)
import Function.Related as FR
open import Function.Related.TypeIsomorphisms.NP
open import Relation.Binary.NP
open import Relation.Binary.Sum
open import Relation.Binary.Product.Pointwise
open import Relation.Unary.Logical
open import Relation.Binary.Logical
import Relation.Binary.PropositionalEquality.NP as ≡
open ≡ using (_≡_; _≗_)
open import Search.Type
module sum-setoid where
SearchExtFun-úber : ∀ {A B} → (SF : Search (A → B)) → SearchInd SF → SearchExtFun SF
SearchExtFun-úber sf sf-ind op {f = f}{g} f≈g = sf-ind (λ s → s op f ≡ s op g) (≡.cong₂ op) (λ x → f≈g (λ _ → ≡.refl))
SearchExtFun-úber' : ∀ {A B} → (SF : Search (A → B)) → SearchInd SF → SearchExtFun SF
SearchExtFun-úber' sf sf-ind op {f = f}{g} f≈g = sf-ind (λ s → s op f ≡ s op g) (≡.cong₂ op) (λ x → f≈g (λ _ → ≡.refl))
SearchExtoid : ∀ {A : Setoid L.zero L.zero} → Search (Setoid.Carrier A) → ★₁
SearchExtoid {A} sᴬ = ∀ {M} op {f g : A FE.⟶ ≡.setoid M} → Setoid._≈_ (A FE.⇨ ≡.setoid M) f g → sᴬ op (_⟨$⟩_ f) ≡ sᴬ op (_⟨$⟩_ g)
sum-lin⇒sum-zero : ∀ {A} → {sum : Sum A} → SumLin sum → SumZero sum
sum-lin⇒sum-zero sum-lin = sum-lin (λ _ → 0) 0
sum-mono⇒sum-ext : ∀ {A} → {sum : Sum A} → SumMono sum → SumExt sum
sum-mono⇒sum-ext sum-mono f≗g = ℕ≤.antisym (sum-mono (ℕ≤.reflexive ∘ f≗g)) (sum-mono (ℕ≤.reflexive ∘ ≡.sym ∘ f≗g))
sum-ext+sum-hom⇒sum-mono : ∀ {A} → {sum : Sum A} → SumExt sum → SumHom sum → SumMono sum
sum-ext+sum-hom⇒sum-mono {sum = sum} sum-ext sum-hom {f} {g} f≤°g =
sum f ≤⟨ m≤m+n _ _ ⟩
sum f + sum (λ x → g x ∸ f x) ≡⟨ ≡.sym (sum-hom _ _) ⟩
sum (λ x → f x + (g x ∸ f x)) ≡⟨ sum-ext (m+n∸m≡n ∘ f≤°g) ⟩
sum g ∎ where open ≤-Reasoning
record SumPropoid (As : Setoid L.zero L.zero) : ★₁ where
constructor _,_
module ≈ᴬ = Setoid As
open ≈ᴬ using () renaming (_≈_ to _≈ᴬ_; Carrier to A)
field
search : Search A
search-ind : SearchInd search
⟦search⟧ : ∀ {Aᵣ : A → A → ★}
(Aᵣ-refl : Reflexive Aᵣ)
→ ⟦Search⟧₁ Aᵣ search
⟦search⟧ Aᵣ-refl Mᵣ ∙ᵣ fᵣ = search-ind (λ s → Mᵣ (s _ _) (s _ _))
(λ η → ∙ᵣ η)
(λ _ → fᵣ Aᵣ-refl)
-- this one is given for completness but the asking for the Aₚ predicate
-- to be trivial makes this result useless.
[search] : ∀ (Aₚ : A → ★)
(Aₚ-triv : ∀ x → Aₚ x)
→ [Search] Aₚ search
[search] Aₚ Aₚ-triv {M} Mₚ ∙ₚ fₚ =
search-ind (λ s → Mₚ (s _ _)) (λ η → ∙ₚ η) (λ x → fₚ (Aₚ-triv x))
search-sg-ext : SearchSgExt search
search-sg-ext sg {f} {g} f≈°g = search-ind (λ s → s _ f ≈ s _ g) ∙-cong f≈°g
where open Sgrp sg
foo : ∀ {A : ★} {R : A → A → ★} → Reflexive R → _≡_ ⇒ R
foo R-refl ≡.refl = R-refl
search-ext : SearchExt search
-- search-ext op {g = g} pf = ⟦search⟧ {_≡_} ≡.refl _≡_ (λ η → ≡.cong₂ op η) (≡.trans (pf _) ∘ ≡.cong g) -- (foo (λ {x} → pf x))
search-ext op pf = ⟦search⟧ {_≡_} ≡.refl _≡_ (λ η → ≡.cong₂ op η)
(foo (λ {x} → pf x))
-- (λ { {x} .{x} ≡.refl → pf _ })
-- {!search-extoid op = ⟦search⟧ {_≈ᴬ_} ≈ᴬ.refl _≡_ (λ η → ≡.cong₂ op η)!}
search-mono : SearchMono search
search-mono _⊆_ _∙-mono_ {f} {g} f⊆°g = search-ind (λ s → s _ f ⊆ s _ g) _∙-mono_ f⊆°g
search-swap : SearchSwap search
search-swap sg f {sᴮ} pf = search-ind (λ s → s _ (sᴮ ∘ f) ≈ sᴮ (s _ ∘ flip f)) (λ p q → trans (∙-cong p q) (sym (pf _ _))) (λ _ → refl)
where open Sgrp sg
searchMon : SearchMon A
searchMon m = search _∙_
where open Mon m
search-ε : Searchε searchMon
search-ε m = search-ind (λ s → s _ (const ε) ≈ ε) (λ x≈ε y≈ε → trans (∙-cong x≈ε y≈ε) (proj₁ identity ε)) (λ _ → refl)
where open Mon m
search-hom : SearchMonHom searchMon
search-hom cm f g = search-ind (λ s → s _ (f ∙° g) ≈ s _ f ∙ s _ g)
(λ p₀ p₁ → trans (∙-cong p₀ p₁) (∙-interchange _ _ _ _)) (λ _ → refl)
where open CMon cm
search-hom′ :
∀ {S T}
(_+_ : Op₂ S)
(_*_ : Op₂ T)
(f : S → T)
(g : A → S)
(hom : ∀ x y → f (x + y) ≡ f x * f y)
→ f (search _+_ g) ≡ search _*_ (f ∘ g)
search-hom′ _+_ _*_ f g hom = search-ind (λ s → f (s _+_ g) ≡ s _*_ (f ∘ g))
(λ p q → ≡.trans (hom _ _) (≡.cong₂ _*_ p q))
(λ _ → ≡.refl)
StableUnder : As FE.⟶ As → ★₁
StableUnder p = ∀ {B} (op : Op₂ B) f → search op f ≡ search op (f ∘ _⟨$⟩_ p)
sum : Sum A
sum = search _+_
sum-ind : SumInd sum
sum-ind P P+ Pf = search-ind (λ s → P (s _+_)) P+ Pf
sum-ext : SumExt sum
sum-ext = search-ext _+_
sum-zero : SumZero sum
sum-zero = search-ε ℕ+.monoid
sum-hom : SumHom sum
sum-hom = search-hom ℕ°.+-commutativeMonoid
sum-mono : SumMono sum
sum-mono = search-mono _≤_ _+-mono_
sum-lin : SumLin sum
sum-lin f zero = sum-zero
sum-lin f (suc k) = ≡.trans (sum-hom f (λ x → k * f x)) (≡.cong₂ _+_ (≡.refl {x = sum f}) (sum-lin f k))
SumStableUnder : As FE.⟶ As → ★
SumStableUnder p = ∀ (f : As FE.⟶ ≡.setoid ℕ) → sum (_⟨$⟩_ f) ≡ sum (_⟨$⟩_ (f FE.∘ p))
sumStableUnder : ∀ {p} → StableUnder p → SumStableUnder p
sumStableUnder SU-p f = SU-p _+_ (_⟨$⟩_ f)
Card : ℕ
Card = sum (const 1)
count : Count A
count f = sum (Bool.toℕ ∘ f)
count-ext : CountExt count
count-ext f≗g = sum-ext (≡.cong Bool.toℕ ∘ f≗g)
CountStableUnder : As FE.⟶ As → ★
CountStableUnder p = ∀ (f : As FE.⟶ ≡.setoid Bool) → count (_⟨$⟩_ f) ≡ count (_⟨$⟩_ (f FE.∘ p))
countStableUnder : ∀ {p} → SumStableUnder p → CountStableUnder p
countStableUnder sumSU-p f = sumSU-p (≡.:→-to-Π Bool.toℕ FE.∘ f)
search-extoid : SearchExtoid {As} search
-- search-extoid op {f = f}{g} f≈g = search-ind (λ s₁ → s₁ op (_⟨$⟩_ f) ≡ s₁ op (_⟨$⟩_ g)) (≡.cong₂ op) (λ x → f≈g (Setoid.refl As))
search-extoid op = ⟦search⟧ {_≈ᴬ_} ≈ᴬ.refl _≡_ (λ η → ≡.cong₂ op η)
SumProp : ★ → ★₁
SumProp A = SumPropoid (≡.setoid A)
open SumPropoid public
search-swap' : ∀ {A B} cm (μA : SumPropoid A) (μB : SumPropoid B) f →
let open CMon cm
sᴬ = search μA _∙_
sᴮ = search μB _∙_ in
sᴬ (sᴮ ∘ f) ≈ sᴮ (sᴬ ∘ flip f)
search-swap' cm μA μB f = search-swap μA sg f (search-hom μB cm)
where open CMon cm
sum-swap : ∀ {A B} (μA : SumPropoid A) (μB : SumPropoid B) f →
sum μA (sum μB ∘ f) ≡ sum μB (sum μA ∘ flip f)
sum-swap = search-swap' ℕ°.+-commutativeMonoid
_≈Sum_ : ∀ {A} → (sum₀ sum₁ : Sum A) → ★
sum₀ ≈Sum sum₁ = ∀ f → sum₀ f ≡ sum₁ f
_≈Search_ : ∀ {A} → (s₀ s₁ : Search A) → ★₁
s₀ ≈Search s₁ = ∀ {B} (op : Op₂ B) f → s₀ op f ≡ s₁ op f
μ⊤ : SumProp ⊤
μ⊤ = srch , ind
where
srch : Search ⊤
srch _ f = f _
ind : SearchInd srch
ind _ _ Pf = Pf _
μBit : SumProp Bit
μBit = searchBit , ind
where
searchBit : Search Bit
searchBit _∙_ f = f 0b ∙ f 1b
ind : SearchInd searchBit
ind _ _P∙_ Pf = Pf 0b P∙ Pf 1b
infixr 4 _+Search_
_+Search_ : ∀ {A B} → Search A → Search B → Search (A ⊎ B)
(searchᴬ +Search searchᴮ) _∙_ f = searchᴬ _∙_ (f ∘ inj₁) ∙ searchᴮ _∙_ (f ∘ inj₂)
_+SearchInd_ : ∀ {A B} {sᴬ : Search A} {sᴮ : Search B} →
SearchInd sᴬ → SearchInd sᴮ → SearchInd (sᴬ +Search sᴮ)
(Psᴬ +SearchInd Psᴮ) P P∙ Pf
= P∙ (Psᴬ (λ s → P (λ _ f → s _ (f ∘ inj₁))) P∙ (Pf ∘ inj₁))
(Psᴮ (λ s → P (λ _ f → s _ (f ∘ inj₂))) P∙ (Pf ∘ inj₂))
infixr 4 _+Sum_
_+Sum_ : ∀ {A B} → Sum A → Sum B → Sum (A ⊎ B)
(sumᴬ +Sum sumᴮ) f = sumᴬ (f ∘ inj₁) + sumᴮ (f ∘ inj₂)
_+μ_ : ∀ {A B} → SumPropoid A → SumPropoid B → SumPropoid (A ⊎-setoid B)
μA +μ μB = _ , search-ind μA +SearchInd search-ind μB
infixr 4 _×Search_
-- liftM2 _,_ in the continuation monad
_×Search_ : ∀ {A B} → Search A → Search B → Search (A × B)
(searchᴬ ×Search searchᴮ) op f = searchᴬ op (λ x → searchᴮ op (curry f x))
_×SearchInd_ : ∀ {A B} {sᴬ : Search A} {sᴮ : Search B}
→ SearchInd sᴬ → SearchInd sᴮ → SearchInd (sᴬ ×Search sᴮ)
(Psᴬ ×SearchInd Psᴮ) P P∙ Pf =
Psᴬ (λ s → P (λ _ _ → s _ _)) P∙ (Psᴮ (λ s → P (λ _ _ → s _ _)) P∙ ∘ curry Pf)
_×SearchExt_ : ∀ {A B} {sᴬ : Search A} {sᴮ : Search B} →
SearchExt sᴬ → SearchExt sᴮ → SearchExt (sᴬ ×Search sᴮ)
(sᴬ-ext ×SearchExt sᴮ-ext) sg f≗g = sᴬ-ext sg (sᴮ-ext sg ∘ curry f≗g)
infixr 4 _×Sum_
-- liftM2 _,_ in the continuation monad
_×Sum_ : ∀ {A B} → Sum A → Sum B → Sum (A × B)
(sumᴬ ×Sum sumᴮ) f = sumᴬ (λ x₀ →
sumᴮ (λ x₁ →
f (x₀ , x₁)))
infixr 4 _×μ_
_×μ_ : ∀ {A B} → SumPropoid A → SumPropoid B → SumPropoid (A ×-setoid B)
μA ×μ μB = _ , search-ind μA ×SearchInd search-ind μB
sum-const : ∀ {A} (μA : SumProp A) → ∀ k → sum μA (const k) ≡ Card μA * k
sum-const μA k
rewrite ℕ°.*-comm (Card μA) k
| ≡.sym (sum-lin μA (const 1) k)
| proj₂ ℕ°.*-identity k = ≡.refl
infixr 4 _×Sum-proj₁_ _×Sum-proj₁'_ _×Sum-proj₂_ _×Sum-proj₂'_
_×Sum-proj₁_ : ∀ {A B}
(μA : SumProp A)
(μB : SumProp B)
f →
sum (μA ×μ μB) (f ∘ proj₁) ≡ Card μB * sum μA f
(μA ×Sum-proj₁ μB) f
rewrite sum-ext μA (sum-const μB ∘ f)
= sum-lin μA f (Card μB)
_×Sum-proj₂_ : ∀ {A B}
(μA : SumProp A)
(μB : SumProp B)
f →
sum (μA ×μ μB) (f ∘ proj₂) ≡ Card μA * sum μB f
(μA ×Sum-proj₂ μB) f = sum-const μA (sum μB f)
_×Sum-proj₁'_ : ∀ {A B}
(μA : SumProp A) (μB : SumProp B)
{f} {g} →
sum μA f ≡ sum μA g →
sum (μA ×μ μB) (f ∘ proj₁) ≡ sum (μA ×μ μB) (g ∘ proj₁)
(μA ×Sum-proj₁' μB) {f} {g} sumf≡sumg
rewrite (μA ×Sum-proj₁ μB) f
| (μA ×Sum-proj₁ μB) g
| sumf≡sumg = ≡.refl
_×Sum-proj₂'_ : ∀ {A B}
(μA : SumProp A) (μB : SumProp B)
{f} {g} →
sum μB f ≡ sum μB g →
sum (μA ×μ μB) (f ∘ proj₂) ≡ sum (μA ×μ μB) (g ∘ proj₂)
(μA ×Sum-proj₂' μB) sumf≡sumg = sum-ext μA (const sumf≡sumg)
μ-view : ∀ {A B} → (A FE.⟶ B) → SumPropoid A → SumPropoid B
μ-view {A}{B} A→B μA = searchᴮ , ind
where
searchᴮ : Search (Setoid.Carrier B)
searchᴮ m f = search μA m (f ∘ _⟨$⟩_ A→B)
ind : SearchInd searchᴮ
ind P P∙ Pf = search-ind μA (λ s → P (λ _ f → s _ (f ∘ _⟨$⟩_ A→B))) P∙ (Pf ∘ _⟨$⟩_ A→B)
μ-iso : ∀ {A B} → (FI.Inverse A B) → SumPropoid A → SumPropoid B
μ-iso A↔B = μ-view (Inverse.to A↔B)
μ-view-preserve : ∀ {A B} (A→B : A FE.⟶ B)(B→A : B FE.⟶ A)(A≈B : A→B RightInverseOf B→A)
(f : A FE.⟶ ≡.setoid ℕ) (μA : SumPropoid A)
→ sum μA (_⟨$⟩_ f) ≡ sum (μ-view A→B μA) (_⟨$⟩_ (f FE.∘ B→A))
μ-view-preserve {A}{B} A→B B→A A≈B f μA = sum-ext μA (λ x → FE.cong f (Setoid.sym A (A≈B x) ))
μ-iso-preserve : ∀ {A B} (A↔B : A ↔ B) f (μA : SumProp A) → sum μA f ≡ sum (μ-iso A↔B μA) (f ∘ _⟨$⟩_ (Inverse.from A↔B))
μ-iso-preserve A↔B f μA = μ-view-preserve (Inverse.to A↔B) (Inverse.from A↔B)
(Inverse.left-inverse-of A↔B)
(≡.:→-to-Π f) μA
open import Data.Fin using (Fin; zero; suc)
open import Data.Vec.NP as Vec using (Vec; tabulate; _++_) renaming (map to vmap; sum to vsum; foldr to vfoldr; foldr₁ to vfoldr₁)
vmsum : ∀ m {n} → let open Mon m in
Vec C n → C
vmsum m = vfoldr _ _∙_ ε
where open Monoid m
vsgsum : ∀ sg {n} → let open Sgrp sg in
Vec C (suc n) → C
vsgsum sg = vfoldr₁ _∙_
where open Sgrp sg
-- let's recall that: tabulate f ≗ vmap f (allFin n)
-- searchMonFin : ∀ n → SearchMon (Fin n)
-- searchMonFin n m f = vmsum m (tabulate f)
searchFinSuc : ∀ n → Search (Fin (suc n))
searchFinSuc n _∙_ f = vfoldr₁ _∙_ (tabulate f)
μMaybe : ∀ {A} → SumProp A → SumProp (Maybe A)
μMaybe μA = srch , ind where
srch : Search (Maybe _)
srch _∙_ f = f nothing ∙ search μA _∙_ (f ∘ just)
ind : SearchInd srch
ind P _P∙_ Pf = Pf nothing
P∙ search-ind μA (λ s → P (λ op f → s op (f ∘ just)) ) _P∙_ (Pf ∘ just)
μMaybeIso : ∀ {A} → SumProp A → SumProp (Maybe A)
μMaybeIso μA = μ-iso (FI.sym Maybe↔⊤⊎ FI.∘ lift-⊎) (μ⊤ +μ μA)
μMaybe^ : ∀ {A} n → SumProp A → SumProp (Maybe^ n A)
μMaybe^ zero μA = μA
μMaybe^ (suc n) μA = μMaybe (μMaybe^ n μA)
μFinSuc : ∀ n → SumProp (Fin (suc n))
μFinSuc n = searchFinSuc n , ind n
where ind : ∀ n → SearchInd (searchFinSuc n)
ind zero P P∙ Pf = Pf zero
ind (suc n) P P∙ Pf = P∙ (Pf zero) (ind n (λ s → P (λ op f → s op (f ∘ suc))) P∙ (Pf ∘ suc))
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}