forked from crypto-agda/crypto-agda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsyntax-fun-universe.agda
62 lines (47 loc) · 2.2 KB
/
syntax-fun-universe.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
open import Type
open import Data.Nat
open import Data.Bits using (Bit; Bits; RewireTbl)
open import Data.Fin using (Fin)
open import data-universe
open import fun-universe
module syntax-fun-universe {T : ★} (dataU : Universe T) where
open Universe dataU
infix 0 _`→_
data _`→_ : T → T → ★ where
id : ∀ {A} → A `→ A
_∘_ : ∀ {A B C} → (B `→ C) → (A `→ B) → (A `→ C)
fst : ∀ {A B} → A `× B `→ A
snd : ∀ {A B} → A `× B `→ B
first : ∀ {A B C} → (A `→ C) → (A `× B) `→ (C `× B)
second : ∀ {A B C} → (B `→ C) → (A `× B) `→ (A `× C)
swap : ∀ {A B} → (A `× B) `→ (B `× A)
assoc : ∀ {A B C} → ((A `× B) `× C) `→ (A `× (B `× C))
<_×_> : ∀ {A B C D} → (A `→ C) → (B `→ D) → (A `× B) `→ (C `× D)
<_,_> : ∀ {A B C} → (A `→ B) → (A `→ C) → A `→ B `× C
dup : ∀ {A} → A `→ A `× A
tt : ∀ {_⊤} → _⊤ `→ `⊤
<[]> : ∀ {_⊤ A} → _⊤ `→ `Vec A 0
<∷> : ∀ {n A} → (A `× `Vec A n) `→ `Vec A (1 + n)
uncons : ∀ {n A} → `Vec A (1 + n) `→ (A `× `Vec A n)
bijFork : ∀ {A B} (f g : A `→ B) → `Bit `× A `→ `Bit `× B
cond : ∀ {A} → `Bit `× A `× A `→ A
fork : ∀ {A B} (f g : A `→ B) → `Bit `× A `→ B
<0b> <1b> : ∀ {_⊤} → _⊤ `→ `Bit
xor : ∀ {n} → Bits n → `Bits n `→ `Bits n
rewire : ∀ {i o} → (Fin o → Fin i) → `Bits i `→ `Bits o
rewireTbl : ∀ {i o} → RewireTbl i o → `Bits i `→ `Bits o
<tt,id> : ∀ {A} → A `→ `⊤ `× A
snd<tt,> : ∀ {A} → `⊤ `× A `→ A
tt→[] : ∀ {A} → `⊤ `→ `Vec A 0
[]→tt : ∀ {A} → `Vec A 0 `→ `⊤
synU : FunUniverse T
synU = dataU , _`→_
synLin : LinRewiring synU
synLin = mk id _∘_ first swap assoc <tt,id> snd<tt,> <_×_>
second tt→[] []→tt <∷> uncons
synRewiring : Rewiring synU
synRewiring = mk synLin tt dup <[]> <_,_> fst snd rewire rewireTbl
synFork : HasFork synU
synFork = cond , fork
synOps : FunOps synU
synOps = mk synRewiring synFork <0b> <1b>