-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotting.py
132 lines (110 loc) · 4.53 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np
import pandas as pd
import xarray as xr
import pickle
import matplotlib.pylab as plt
from IPython.display import display, clear_output
import torch
import torchvision
import scipy.stats as sps
from os import listdir
from os.path import isfile, join
from torch.utils.data import DataLoader, Dataset, TensorDataset
import pyro
import pyro.optim
from pyro.infer import SVI, Trace_ELBO
from torch.distributions import constraints
from pyro import distributions as dst
from collections import defaultdict
import sys
from tracepredictive import *
from models_and_guides import *
from matplotlib.patches import Ellipse
import matplotlib.transforms as transforms
sys.path.append("..")
def plot_learning_curve(losses):
plt.plot(losses,'b');
def plot_held_out_predictive(lppds):
plt.plot(lppds);
def plot_parameter_evolution(param, param_history):
D = param_history[param].shape[-1]
n_iter = param_history[param].shape[0]
idxs = np.random.choice(D, 10)
plt.plot(np.squeeze(param_history[param].detach().numpy()[...,idxs]).reshape(n_iter, -1));
plt.figure()
def plot_samples_from_model(model, svi, x_train, init):
with torch.no_grad():
unconditioned_model = pyro.poutine.uncondition(model)
trace_pred = TracePredictive(unconditioned_model, svi, num_samples=1).run(x_train, 10, init)
predictive_dst_sample = [torch.unsqueeze(trace.nodes['obs']['value'],dim=0) for trace in trace_pred.exec_traces]
for i in range(1):
for j in range(3):
plt.figure()
plt.imshow(predictive_dst_sample[i][0][j].reshape(-1,28).detach().numpy())
def plot_extremes_on_latent_dimensions(param_history, K, x_train, init):
unconditioned_model = pyro.poutine.uncondition(factorLocalLatents)
locmode = param_history['loc_loc'][-1].detach()
cov_factor_loc = param_history['cov_factor_loc_{}'.format(K)][-1].detach()
cov_factor_new_loc = param_history['cov_factor_new_loc_{}'.format(K)][-1].detach()
cov_factormode = torch.cat([cov_factor_loc,torch.unsqueeze(cov_factor_new_loc,dim=0)])
for i in range(K):
factor_coords = torch.ones(K)
factor_coords[i] = -1
zs = torch.matmul(torch.diag(100*factor_coords),torch.ones((K,10)))
condition_latent = pyro.poutine.condition(unconditioned_model, data={"loc":locmode,"cov_factor": cov_factormode,"local_latent": zs})
plt.imshow(condition_latent(x_train, 10, init)[0].reshape(-1,28).detach().numpy())
plt.figure()
def hinton(matrix, max_weight=None, ax=None):
"""Draw Hinton diagram for visualizing a weight matrix."""
ax = ax if ax is not None else plt.gca()
if not max_weight:
max_weight = 2 ** np.ceil(np.log(np.abs(matrix).max()) / np.log(2))
ax.patch.set_facecolor('gray')
ax.set_aspect('equal', 'box')
ax.xaxis.set_major_locator(plt.NullLocator())
ax.yaxis.set_major_locator(plt.NullLocator())
for (x, y), w in np.ndenumerate(matrix):
color = 'white' if w > 0 else 'black'
size = np.sqrt(np.abs(w) / max_weight)
rect = plt.Rectangle([x - size / 2, y - size / 2], size, size,
facecolor=color, edgecolor=color)
ax.add_patch(rect)
ax.autoscale_view()
ax.invert_yaxis()
def confidence_ellipse(mean, cov, ax, n_std=3.0, facecolor='none', **kwargs):
"""
Create a plot of the covariance confidence ellipse of *x* and *y*.
Parameters
----------
x, y : array-like, shape (n, )
Input data.
ax : matplotlib.axes.Axes
The axes object to draw the ellipse into.
n_std : float
The number of standard deviations to determine the ellipse's radiuses.
**kwargs
Forwarded to `~matplotlib.patches.Ellipse`
Returns
-------
matplotlib.patches.Ellipse
"""
mean_x, mean_y = mean
pearson = cov[0, 1]/np.sqrt(cov[0, 0] * cov[1, 1])
# Using a special case to obtain the eigenvalues of this
# two-dimensionl dataset.
ell_radius_x = np.sqrt(1 + pearson)
ell_radius_y = np.sqrt(1 - pearson)
ellipse = Ellipse((0, 0), width=ell_radius_x * 2, height=ell_radius_y * 2,
facecolor=facecolor, **kwargs)
# Calculating the stdandard deviation of x from
# the squareroot of the variance and multiplying
# with the given number of standard deviations.
scale_x = np.sqrt(cov[0, 0]) * n_std
# calculating the stdandard deviation of y ...
scale_y = np.sqrt(cov[1, 1]) * n_std
transf = transforms.Affine2D() \
.rotate_deg(45) \
.scale(scale_x, scale_y) \
.translate(mean_x, mean_y)
ellipse.set_transform(transf + ax.transData)
return ax.add_patch(ellipse)