-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathblinky_gui.py
executable file
·214 lines (181 loc) · 5.67 KB
/
blinky_gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#!/usr/bin/env python
"""Extract blink data and visualize it using matplotlib.
"""
__author__ = "Dilawar Singh"
__copyright__ = "Copyright 2015, Dilawar Singh and NCBS Bangalore"
__credits__ = ["NCBS Bangalore"]
__license__ = "GNU GPL"
__version__ = "1.0.0"
__maintainer__ = "Dilawar Singh"
__email__ = "[email protected]"
__status__ = "Development"
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as anim
import extract
import sys
import cv2
import webcam
import os
import sys
######################################
# Initialize animation here
data_ = np.zeros(shape=(1,3))
cap_ = None
box_ = []
fig_ = plt.figure()
fps_ = 0.0
axes_ = {}
lines_ = {}
ax1 = fig_.add_subplot(2, 1, 1)
ax2 = ax1.twinx()
ax3 = fig_.add_subplot(2, 1, 2)
ax4 = ax3.twinx()
# Inset for raw data.
save_video_ = False
writer_ = None
if save_video_:
fig_ax_ = fig_.add_axes([.7, .55, .2, .2], axisbg='y')
#writer_ = anim.writers['ffmpeg'](fps = 15)
else:
cv2.namedWindow('image')
axes_ = { 'raw' : ax1, 'raw_twin' : ax2, 'blink' : ax3, 'blink_twin' : ax4 }
lines_["rawA"] = ax1.plot([], [], color='blue')[0]
lines_["rawB"] = ax2.plot([], [], color='red')[0]
lines_['blinkA'] = ax3.plot([], [], 's', color = 'blue')[0]
lines_['blinkB'] = ax4.plot([], [], 'p', color = 'red')[0]
time_template_ = 'Time = %.1f s'
time_text_ = fig_.text(0.05, 0.9, '', transform=axes_['blink'].transAxes)
tvec_ = []
y1_ = []
y2_ = []
args_ = None
# Find OpenCV version
major_ver, minor_ver, subminor_ver = cv2.__version__.split('.')
def get_fps( video ):
if int(major_ver) < 3:
fps = video.get(cv2.cv.CV_CAP_PROP_FPS)
else:
fps = video.get(cv2.CAP_PROP_FPS)
return fps
def init():
global axes_, lines_
global box_, fps_
global cap_, args_
videoFile = args_['video_file']
if os.path.isfile( videoFile ):
cap_ = cv2.VideoCapture(videoFile)
else:
print( "Probably camera index" )
cap_ = cv2.VideoCapture(int(videoFile))
fps_ = get_fps( cap_ )
ret, fstFrame = cap_.read()
box_ = webcam.get_bounding_box(fstFrame)
cv2.destroyWindow('Bound_eye')
cv2.destroyAllWindows()
cv2.waitKey(1)
cv2.destroyAllWindows()
return lines_.values()
def update_axis_limits(ax, x, y):
xlim = ax.get_xlim()
if x >= xlim[1]:
ax.set_xlim(xlim[0], x+10)
ylims = ax.get_ylim()
if y >= ylims[1]:
ax.set_ylim(ylims[0], y+1)
def animate(i):
global data_
global time_text_
global box_
global tvec_, y1_, y2_
global cap_
global fig_ax_
t = float(i) / fps_
ret, img = cap_.read()
(x0, y0), (x1, y1) = box_
try:
frame = img[y0:y1,x0:x1]
except Exception as e:
print('[WARN] Frame %s dropped' % i)
return lines_.values(), time_text_
gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
if save_video_:
fig_ax_.imshow(frame[::2,::2], interpolation='nearest')
else:
cv2.imshow('image', frame)
cv2.waitKey(1)
inI, outI, edge, pixal = webcam.process_frame(gray)
tvec_.append(t); y1_.append(edge); y2_.append(pixal)
update_axis_limits(axes_['raw'], t, edge)
update_axis_limits(axes_['raw_twin'], t, pixal)
lines_['rawA'].set_data(tvec_, y1_)
lines_['rawB'].set_data(tvec_, y2_)
# update every 5 seconds.
if i % int(fps_) == 0 and i > int(fps_)*5:
success = True
data_ = np.array((tvec_, y1_, y2_)).T
if data_ is None:
success = False
try:
tA, bA = extract.find_blinks_using_edge(data_[:,:])
except Exception as e:
print( "[WARN ] Failed to detect blink (edges). Error was %s" % e )
success = False
try:
tB, bB = extract.find_blinks_using_pixals(data_[:,:])
except Exception as e:
print( "[WARN ] Failed to detect blink (pixals). Error was %s" % e)
success = False
if success:
update_axis_limits(axes_['blink'], t, 1)
update_axis_limits(axes_['blink_twin'], t, 1)
lines_['blinkA'].set_data(tA, 0.9*np.ones(len(tA)))
lines_['blinkB'].set_data(tB, np.ones(len(tB)))
time_text_.set_text(time_template_ % t)
return lines_.values(), time_text_
def get_blinks( ):
global ani_, cap_
global save_video_
ani_ = anim.FuncAnimation(fig_
, animate
, interval = 1
, init_func=init
, blit = False
)
if save_video_:
print("Writing to video file output.mp4")
ani_.save('output.mp4', fps=10, extra_args=['-vcodec', 'libx264'])
plt.show( )
def main():
global data_, args_
vidFile = args_['video_file']
if not os.path.exists(vidFile):
print("[WARN] Given file %s does not exits" % vidFile)
quit()
try:
get_blinks()
except Exception as e:
print( '[WARN] Failed to get blinks: %s' % e )
pass
cap_.release()
outfile = '%s_out.csv' % vidFile
print("[INFO] Writing to file %s" % outfile)
np.savetxt(outfile, data_, delimiter=',' ,header="time,edge,pixal")
outfile = '%s_out.csv' % vidFile
print("[INFO] Writing to file %s" % outfile)
np.savetxt(outfile, data_, delimiter=',' ,header="time,edge,pixal")
if __name__ == '__main__':
import argparse
# Argument parser.
description = '''description'''
parser = argparse.ArgumentParser(description=description)
class Args: pass
args = Args()
parser.add_argument('--video-file', '-f'
, required = True
, type = str
, help = 'Path of the video file'
)
parser.parse_args(namespace=args)
args_ = vars(args)
main()