-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathgradient.py
36 lines (24 loc) · 884 Bytes
/
gradient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
# Gradients
def gradient():
img = cv.imread("./img/rohit.jpg", 0)
# img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
lap = cv.Laplacian(img, cv.CV_64F, ksize=3)
lap = np.uint8(np.absolute(lap))
sobelX = cv.Sobel(img, cv.CV_64F, 1, 0)
sobelY = cv.Sobel(img, cv.CV_64F, 0, 1)
sobleX = np.uint8(np.absolute(sobelX))
sobleY = np.uint8(np.absolute(sobelY))
sobelCombined = cv.bitwise_or(sobelX, sobelY)
title = ["Original Image", "Laplacian",
"SobelX", "SobelY", "Combined Sobel(or)"]
images = [img, lap, sobleX, sobelY, sobelCombined]
for i in range(len(images)):
plt.subplot(2, 3, i+1), plt.imshow(images[i], 'gray')
plt.title(title[i])
plt.xticks([]), plt.yticks([])
plt.show()
if __name__ == "__main__":
gradient()