-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmrcal-cull-corners
executable file
·260 lines (206 loc) · 9.92 KB
/
mrcal-cull-corners
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#!/usr/bin/env python3
# Copyright (c) 2017-2023 California Institute of Technology ("Caltech"). U.S.
# Government sponsorship acknowledged. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
r'''Filters a corners.vnl on stdin to cut out some points
SYNOPSIS
$ < corners.vnl mrcal-cull-corners --cull-left-of 1000 > corners.culled.vnl
This tool reads a set of corner detections on stdin, throws some of them out,
and writes the result to stdout. This is useful for testing and evaluating the
performance of the mrcal calibration tools.
The specific operation of this tool is defined on which --cull-... option is
given. Exactly one is required:
--cull-left-of X: throw away all corner observations to the left of the given
X coordinate
--cull-rad-off-center D: throw away all corner observations further than D
away from the center. --imagersize or --where must be given also so that we
know where the center is. If D < 0: we cull the points -D or closer to the
corners: we use a radius of sqrt(width^2 + height^2)/2. - abs(D)
--cull-random-observations-ratio R: throws away a ratio R object observations
at random. To throw out half of all object observations, pass R = 0.5.
--object-width-n and --object-height-n are then required to make the parsing
work
--cull-left-of X and --cull-rad-off-center throw out individual points. This is
done by keeping the point in the output data stream, but setting its
decimation level to '-'. The downstream tools then know to ignore those points
--cull-random-observations-ratio throws out whole object observations, not just
individual points. These removed observations do not appear in the output data
stream at all
This tool exists primarily for testing, and probably you don't want to use it.
The filtering is crude, and the tool might report chessboard observations with
very few remaining points. You PROBABLY want to post-process the output to keep
only observations with enough points. For instance:
mrcal-cull-corners ... > culled-raw.vnl
vnl-join --vnl-sort - -j filename culled-raw.vnl \
<(< culled-raw.vnl vnl-filter -p filename --has level |
vnl-uniq -c |
vnl-filter 'count > 20' -p filename ) \
> culled.vnl
'''
import sys
import argparse
import re
import os
def parse_args():
parser = \
argparse.ArgumentParser(description = __doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('--object-width-n',
type=int,
help='''How many points the calibration board has per horizontal side. This is required
if --cull-random-observation-ratio''')
parser.add_argument('--object-height-n',
type=int,
help='''How many points the calibration board has per vertical side. If omitted, I
assume a square object and use the same value as --object-width-n''')
parser.add_argument('--imagersize',
nargs=2,
type=int,
help='''Size of the imager. If --cull-rad-off-center is
given: we require --imagersize or --where''')
parser.add_argument('--cull-left-of',
required=False,
type=float,
help='''Throw out all observations with x < the given value. Exclusive with the other
--cull-... options''')
parser.add_argument('--cull-rad-off-center',
required=False,
type=float,
help='''Throw out all observations with dist_from_center
> the given value. Exclusive with the other --cull-...
options. If --cull-rad-off-center is given: we require
--imagersize or --where''')
parser.add_argument('--cull-random-observations-ratio',
required=False,
type=float,
help='''Throw out a random number of board observations. The ratio of observations is
given as the argument. 1.0 = throw out ALL the
observations; 0.0 = throw out NONE of the observations.
Exclusive with the other --cull-... options''')
parser.add_argument('--where',
type=float,
nargs=2,
help='''Used with --cull-rad-off-center. Specifies the
location of the "center" point. If omitted, we use the
center of the imager. May NOT be given if
--cull-rad-off-center < 0. If --cull-rad-off-center is
given: we require --imagersize or --where''')
parser.add_argument('--filename',
type=str,
action='append',
help='''Apply the filtering only to observations where
the filename matches the given regex. May be given
multiple times: filenames that match ANY of the given
regexen are culled. If omitted, we cull ALL the
observations. Exclusive with
--cull-random-observations-ratio''')
return parser.parse_args()
args = parse_args()
Nculloptions = 0
if args.cull_left_of is not None: Nculloptions += 1
if args.cull_rad_off_center is not None: Nculloptions += 1
if args.cull_random_observations_ratio is not None: Nculloptions += 1
if Nculloptions != 1:
print("Exactly one --cull-... option must be given", file=sys.stderr)
sys.exit(1)
if args.object_width_n is not None and args.object_height_n is None:
args.object_height_n = args.object_width_n
if args.cull_random_observations_ratio:
if (args.object_width_n is None or args.object_height_n is None):
print("--cull-random-observation-ratio requires --object-width-n and --object-height-n",
file=sys.stderr)
sys.exit(1)
if args.filename is not None:
print("--cull-random-observation-ratio is exclusive with --filename",
file=sys.stderr)
sys.exit(1)
if args.cull_rad_off_center is not None:
if args.imagersize is None and args.where is None:
print("--cull-rad-off-center requires --imagersize or --where", file=sys.stderr)
sys.exit(1)
if args.cull_rad_off_center < 0 and args.where is not None:
print("--cull-rad-off-center < 0 may not be given with --where", file=sys.stderr)
sys.exit(1)
import re
import numpy as np
import numpysane as nps
import mrcal
import time
print(f"## generated on {time.strftime('%Y-%m-%d %H:%M:%S')} with {' '.join(mrcal.shellquote(s) for s in sys.argv)}")
if args.cull_left_of is not None or args.cull_rad_off_center is not None:
# Simple file parsing.
if args.filename is None:
filename_filter = None
else:
filename_filter_string = '|'.join(f"(?:{s})" for s in args.filename)
filename_filter = re.compile(filename_filter_string)
if args.cull_rad_off_center is not None:
if args.cull_rad_off_center >= 0:
if args.where is None:
c = (np.array(args.imagersize, dtype=float) - 1.) / 2.
else:
c = np.array(args.where, dtype=float)
r = args.cull_rad_off_center
else:
dims = np.array(args.imagersize, dtype=float)
c = (dims - 1.) / 2.
r = nps.mag(dims)/2. + args.cull_rad_off_center
for l in sys.stdin:
if re.match(r'\s*(?:##|$)',l):
sys.stdout.write(l)
continue
if l == '# filename x y level\n':
sys.stdout.write(l)
break
print("This tool REQUIRES a vnlog with legend matching EXACTLY '# filename x y level'. Giving up", file=sys.stderr)
sys.exit(1)
for l in sys.stdin:
if re.match(r'\s*(?:#|$)',l):
sys.stdout.write(l)
continue
f = l.split()
if f[1] == '-':
sys.stdout.write(l)
continue
if filename_filter is not None and \
not filename_filter.search(f[0]):
sys.stdout.write(l)
continue
if args.cull_left_of is not None and float(f[1]) > args.cull_left_of:
sys.stdout.write(l)
continue
if args.cull_rad_off_center is not None and \
nps.norm2(np.array((float(f[1]), float(f[2]))) - c) < r*r:
sys.stdout.write(l)
continue
# Cull the point!
f[3] = '-'
sys.stdout.write(' '.join(f) + '\n')
sys.exit()
observations, _, paths = \
mrcal.compute_chessboard_corners(W = args.object_width_n,
H = args.object_height_n,
corners_cache_vnl = sys.stdin,
weight_column_kind = 'weight')
N_keep = int(round((1.0 - args.cull_random_observations_ratio) * len(observations)))
indices_keep = np.sort(np.random.choice(len(observations), N_keep, replace=False))
# shape (N, Nh,Nw,3)
observations = observations[indices_keep]
paths = [paths[i] for i in indices_keep]
# shape (N, Nh*Nw, 3)
observations = nps.mv( nps.clump(nps.mv(observations, -1,-3),
n = -2),
-2, -1)
# I cut out the data. Now I reconstitute the corners.vnl
print('# filename x y level')
for i in range(len(paths)):
path = paths[i]
for j in range(observations.shape[-2]):
l = observations[i][j][2]
if l < 0: l = '-'
else: l = int(l)
print(f"{path} {observations[i][j][0]} {observations[i][j][1]} {l}")