-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfunnel_maker.py
1128 lines (1030 loc) · 56.4 KB
/
funnel_maker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import MDAnalysis as mda
import os
import numpy as np
import shutil
import subprocess as sp
import sys
import datetime
def name_file_sequentially(filename):
"""
Checks if there is a file already with
the same name. If yes, then gives the file
a number in sequence.
Prevents file overwritting.
Returns filename + sequential int (if needed) + file extension
Eg.
1. os.listdir()
['file.txt']
2. fname = name_file_sequentially('file.txt')
3. print(fname)
'file.0.txt'
4. open(fname,'w').close
5. os.listdir()
['file.txt','file.0.txt']
Repeat 2-5
['file.txt','file.0.txt','file.1.txt']
"""
if '/' not in filename:
lst = [ f for f in os.listdir('.') if filename.split('.')[0] in f]
else:
path = os.path.abspath(filename)
lst = [ f for f in os.listdir(path) if filename.split('.')[0] in f]
if len(lst) == 0:
return filename
else:
all_indices = [ int(f.split('.')[-2]) for f in lst if len(f.split('.')) > 2]
if len(all_indices) == 0:
new_last_index = 0
else:
last_index = max(all_indices)
new_last_index = last_index + 1
return filename.split('.')[0]+'.%i.'% (new_last_index)+filename.split('.')[-1]
def write_funnel_pymol_session(structure_file, p0, p1, topology_file='',
extent = 0.85, extent_buffer = 0.15,
l_proj = 0.5, u_proj = 3.5, beta_cent = 1.5,
s_cent = 2.0, display_grid = False, center_grid_point=[],
grid_display_lines=[], special_point=[]):
"""
Writes a plumed script that loads the structure (and topology) file
and draws a funnel based on your inputs.
If provided with the data, can also display the search grid
used to define the funnel.
"""
session_file_name = name_file_sequentially('visualise_funnel.pml')
working_dir = os.path.dirname(structure_file)
# some exceptions for amber files
if 'rst' in structure_file.split('/')[-1]:
top_prefix = topology_file.split('/')[-1].split('.')[0]
new_topology_file = os.path.join(working_dir, top_prefix + '.top')
strc_prefix = structure_file.split('/')[-1].split('.')[0]
new_structure_file = os.path.join(working_dir, top_prefix + '.rst')
shutil.copy(structure_file, new_structure_file)
shutil.copy(topology_file, new_topology_file)
p0_string = ''
p1_string = ''
for i in p0:
p0_string += 'ID %i '%i
for i in p1:
p1_string += 'ID %i '%i
with open(session_file_name, 'w') as PML_SCRIPT:
if 'rst7' in structure_file.split('/')[-1]:
PML_SCRIPT.write('load %s,mol\n'% new_topology_file)
PML_SCRIPT.write('load %s,mol\n'% new_structure_file)
else:
PML_SCRIPT.write('load %s\n'% structure_file)
PML_SCRIPT.write('\n')
PML_SCRIPT.write('hide everythin, solvent\n')
PML_SCRIPT.write('show cartoon, all\n')
PML_SCRIPT.write('show sticks, organic\n')
PML_SCRIPT.write('\n')
n = 0
if display_grid is True:
PML_SCRIPT.write('pseudoatom center_grid, pos=[%.3f, %.3f, %.3f]\n'%(center_grid_point[0],\
center_grid_point[1],\
center_grid_point[2]))
PML_SCRIPT.write('show spheres, center_grid\n')
PML_SCRIPT.write('pseudoatom special, pos=[%.3f, %.3f, %.3f]\n'%(special_point[0],\
special_point[1],\
special_point[2]))
PML_SCRIPT.write('show spheres, special\n')
PML_SCRIPT.write('color cyan, special\n')
for line in grid_display_lines:
PML_SCRIPT.write(line)
PML_SCRIPT.write('# take a point 10A deeper into the protein core\n')
PML_SCRIPT.write('select p0, %s\n'%p0_string)
PML_SCRIPT.write('com p0\n')
PML_SCRIPT.write('show spheres, p0_COM\n')
PML_SCRIPT.write('\n')
PML_SCRIPT.write('# select all CA within 10A of the grid center, find its COM\n')
PML_SCRIPT.write('select p1, %s\n'%p1_string)
PML_SCRIPT.write('com p1\n')
PML_SCRIPT.write('show spheres, p1_COM\n')
PML_SCRIPT.write('\n')
PML_SCRIPT.write('\n')
PML_SCRIPT.write('# draw the funnel\n')
PML_SCRIPT.write('draw_funnel p0_COM, p1_COM, upper_wall=%f,\
lower_wall=%f,\
s_cent=%f,\
beta_cent=%f,\
wall_width=%f,\
wall_buffer=%f\n'% (u_proj*10,l_proj*10,s_cent*10,
beta_cent,extent*10,extent_buffer*10))
# x10 because its in A, not nm
def make_funnel(structure_file, topology_file='',
grid_coords = [],
ligand_name = 'MOL',
output_pymol_session = False,
display_grid = False):
"""
Defines the funnel based on search criteria, essentially pointing away
from the protein.
Inputs:
structure_file - any MDAnalysis readable structure file
topology_file - if using Amber structure files, you must provide a topology file as well
grid_coords - if choosing to use xyz to define the centre of the binding site
(ala docking), provide the coords in a list
ligand_name - if not providing the centre of the search grid in xyz,
specify the name of the ligand. Default - MOL
write_pymol_session - writes a pymol session, showing how the funnel was drawn
display_grid - if outputing a pymol session, can project the search grid too.
Basically for debugging.
Returns:
p0 and p1 - numpy arrays that contain atom IDs as found in the structure file
"""
if '.rst7' in structure_file.split('/')[-1]:
u = mda.Universe(topology_file,structure_file,format='RESTRT')
elif '.inpcrd' in structure_file.split('/')[-1]:
u = mda.Universe(topology_file,structure_file,format='INPCRD')
else:
u = mda.Universe(structure_file)
if grid_coords:
center_grid_point = grid_coords
else:
center_grid_point = u.select_atoms('resname %s'% ligand_name).center_of_mass()
if len(center_grid_point) == 0:
center_grid_point = u.select_atoms('resname LIG').center_of_mass()
if len(center_grid_point) == 0:
sys.exit("""Neither rename 'MOL' nor 'LIG' were found in the structure file.\n
Please specify either coordinates for the grid or an appropriate residue\n
name for the ligand.""")
# lets project a grid on the binding site
# 20 angstrom grid edge
grid_length = 20
# how many grid points along each edge
n_edge_points = 5
# distance from each grid point to look for protein
search_radius = (grid_length / n_edge_points) / 2
n = 0
grid_display_lines = []
solvent_com = []
x_min, x_max = center_grid_point[0] - grid_length/2, center_grid_point[0] + grid_length/2
y_min, y_max = center_grid_point[1] - grid_length/2, center_grid_point[1] + grid_length/2
z_min, z_max = center_grid_point[2] - grid_length/2, center_grid_point[2] + grid_length/2
for x in np.linspace(x_min, x_max, n_edge_points):
for y in np.linspace(y_min, y_max, n_edge_points):
for z in np.linspace(z_min, z_max, n_edge_points):
if display_grid is True:
grid_display_lines.append('pseudoatom g_pnt%i, pos=[%.3f, %.3f, %.3f]\n'%(n, x, y, z))
grid_display_lines.append('show spheres, g_pnt%i\n'%(n))
protein_atoms = u.select_atoms('protein and point %.3f %.3f %.3f %.3f'% (x,y,z,\
search_radius),\
periodic = False)
if len(protein_atoms) > 0:
if display_grid is True:
grid_display_lines.append('color red, g_pnt%i\n'%(n))
else:
solvent_com.append([x,y,z])
n += 1
# if no protein detected at multiple grid points, find where the average coord is
special_point = np.array([np.mean(np.array(solvent_com)[:,0]),\
np.mean(np.array(solvent_com)[:,1]),\
np.mean(np.array(solvent_com)[:,2])])
# select all C alpha atoms within 10 A of the ligand/center of the grid
near_ca = u.select_atoms('name CA and point %.3f %.3f %.3f 10'% (center_grid_point[0],\
center_grid_point[1],\
center_grid_point[2]),
periodic = False)
initial_funnel_vector = special_point - near_ca.center_of_mass()
initial_normed_funnel_vector = initial_funnel_vector / np.sqrt(np.sum(np.square(initial_funnel_vector)))
into_the_protein = near_ca.center_of_mass() - 10 * initial_normed_funnel_vector
p0_group = u.select_atoms('name CA and point %.3f %.3f %.3f 7'%(into_the_protein[0],\
into_the_protein[1],\
into_the_protein[2]),\
periodic = False)
p0 = []
p1 = []
for i in p0_group.ids:
p0.append(i)
p0 = np.array(p0)
for i in near_ca.ids:
p1.append(i)
p1 = np.array(p1)
# build the 'real' funnel vector
funnel_vector = near_ca.center_of_mass() - p0_group.center_of_mass()
normed_funnel_vector = funnel_vector / np.sqrt(np.sum(np.square(funnel_vector)))
funnel_vector_pnts = []
if output_pymol_session is True:
# this bit is for display purposes only...
write_funnel_pymol_session(structure_file=structure_file, p0=p0, p1=p1,
topology_file=topology_file, display_grid=display_grid,
center_grid_point=center_grid_point,
grid_display_lines=grid_display_lines,
special_point=special_point)
return p0, p1
def get_protein_ligand_ids(structure_file, topology_file='', ligand_name = 'MOL'):
"""
Returns a np array of atom IDs for
the protein and the ligand.
Used for writing plumed.dat files
"""
if '.rst7' in structure_file.split('/')[-1]:
u = mda.Universe(topology_file,structure_file,format='RESTRT')
elif '.inpcrd' in structure_file.split('/')[-1]:
u = mda.Universe(topology_file,structure_file,format='INPCRD')
else:
u = mda.Universe(structure_file)
ligand_group = u.select_atoms('resname %s'% ligand_name)
if len(ligand_group) == 0:
ligand_group = u.select_atoms('resname LIG')
if len(ligand_group) == 0:
sys.exit("""Neither rename 'MOL' nor 'LIG' were found in the structure file.\n
Please specify an appropriate residue name for the ligand.""")
protein_group = u.select_atoms('protein')
protein_IDs = []
for i in protein_group.ids:
protein_IDs.append(i)
protein_IDs = np.array(protein_IDs)
ligand_IDs = []
for i in ligand_group.ids:
ligand_IDs.append(i)
ligand_IDs = np.array(ligand_IDs)
return protein_IDs, ligand_IDs
def write_plumed_file(p0, p1, protein_IDs, lig_IDs, extent = 0.60, extent_buffer = 0.15,
l_proj = 0.5, u_proj = 4.0, beta_cent = 1.5,
s_cent = 2, deposition_pace = 1000,
print_pace = 1000, write_ProjectionOnAxis = False):
"""
Writes a standard wt fun-metaD plumed.dat file in the current working directory.
p0, p1 - numpy array, atom IDs that will act as anchor points for the funnel
protein_IDs - numpy array, atom IDs (inclusive) belonging to the protein / host molecule
lig_IDs - numpy array, atom IDs (inclusive) belonging to the ligand / guest molecule
Length units are in nm.
"""
version = 1.0
p0_str = ''
for i in p0:
p0_str += str(i) + ','
p0_str = p0_str[:-1]
p1_str = ''
for i in p1:
p1_str += str(i) + ','
p1_str = p1_str[:-1]
protein_str = '%i-%i'% (protein_IDs[0], protein_IDs[-1])
lig_str = '%i-%i'% (lig_IDs[0], lig_IDs[-1])
with open('plumed.dat', 'w') as FILE:
FILE.write('####################################\n')
FILE.write('#plumed.dat for Funnel Metadynamics#\n')
FILE.write('# Written on %s\n'% datetime.datetime.now())
FILE.write('# By funnel_maker %s\n'% str(version))
FILE.write('####################################\n')
FILE.write('RESTART\n')
FILE.write('\n')
FILE.write('###############################################\n')
FILE.write('###DEFINE RADIUS + CALC PROT-LIG VECTOR COMP###\n')
FILE.write('###############################################\n')
if write_ProjectionOnAxis is True:
FILE.write('LOAD FILE=ProjectionOnAxis.cpp\n')
FILE.write('\n')
FILE.write('WHOLEMOLECULES STRIDE=1 ENTITY0=%s ENTITY1=%s\n'% (protein_str, lig_str))
FILE.write('\n')
FILE.write('########################\n')
FILE.write('###DEFINITION_OF_COMs###\n')
FILE.write('########################\n')
FILE.write('lig: COM ATOMS=%s\n'% lig_str)
FILE.write('p0: COM ATOMS=%s\n'% p0_str)
FILE.write('p1: COM ATOMS=%s\n'% p1_str)
FILE.write('\n')
FILE.write('\n')
FILE.write('########################\n')
FILE.write('###DEFINITION_OF_ARGs###\n')
FILE.write('########################\n')
FILE.write('# CV1: pp.proj = projection on the axis. The distance from the axis to the origin (along the axis)\n')
FILE.write('# CV2: pp.ext = orthogonal distance between the ATOM(=lig) to the axis.\n')
FILE.write('\n')
FILE.write('############\n')
FILE.write('###PoA_CV ##\n')
FILE.write('############\n')
FILE.write('pp: PROJECTION_ON_AXIS AXIS_ATOMS=p0,p1 ATOM=lig\n')
FILE.write('\n')
FILE.write('#######################\n')
FILE.write('###FUNNEL_PARAMETERS###\n')
FILE.write('#######################\n')
FILE.write('s_cent: CONSTANT VALUES=%.1f # INFLEXION\n'% s_cent)
FILE.write('beta_cent: CONSTANT VALUES=%.1f # STEEPNESS\n'% beta_cent)
FILE.write('wall_width: CONSTANT VALUES=%.2f # WIDTH (h)\n'% extent)
FILE.write('wall_buffer: CONSTANT VALUES=%.2f # BUFFER (f, total width = WIDTH + BUFFER)\n'% extent_buffer)
FILE.write('lwall: LOWER_WALLS ARG=pp.proj AT=%.1f KAPPA=20000.0 EXP=2 EPS=1 # Lower Wall (the starting point of the funnel)\n'% l_proj)
FILE.write('uwall: UPPER_WALLS ARG=pp.proj AT=%.1f KAPPA=20000.0 EXP=2 EPS=1 # Upper Wall (the ending point of the funnel)\n'% u_proj)
FILE.write('\n')
FILE.write('##################################\n')
FILE.write('###########CALCULATE FUNNEL#######\n')
FILE.write('# Returns the radius of the funnel\n')
FILE.write('# at the current value of the cv\n')
FILE.write('##################################\n')
FILE.write('MATHEVAL ...\n')
FILE.write(' LABEL=wall_center\n')
FILE.write(' ARG=pp.proj,s_cent,beta_cent,wall_width,wall_buffer\n')
FILE.write(' VAR=s,sc,b,h,f\n')
FILE.write(' FUNC=h*(1./(1.+exp(b*(s-sc))))+f\n')
FILE.write(' PERIODIC=NO\n')
FILE.write('... MATHEVAL\n')
FILE.write('\n')
FILE.write('\n')
FILE.write('##############################\n')
FILE.write('#####POTENTIAL_PARAMETERS#####\n')
FILE.write('##############################\n')
FILE.write('scaling: CONSTANT VALUES=1.0\n')
FILE.write('spring: CONSTANT VALUES=1000.0\n')
FILE.write('\n')
FILE.write('##############################\n')
FILE.write('#######DEFINE_POTENTIAL#######\n')
FILE.write('##############################\n')
FILE.write('MATHEVAL ...\n')
FILE.write(' LABEL=wall_bias\n')
FILE.write(' ARG=pp.ext,spring,wall_center,scaling\n')
FILE.write(' VAR=z,k,zc,sf\n')
FILE.write(' FUNC=step(z-zc)*k*(z-zc)*(z-zc)/(sf*sf)\n')
FILE.write(' PERIODIC=NO\n')
FILE.write('... MATHEVAL\n')
FILE.write('\n')
FILE.write('finalbias: BIASVALUE ARG=wall_bias\n')
FILE.write('\n')
FILE.write('\n')
FILE.write('###############################\n')
FILE.write('########DEFINE_METAD###########\n')
FILE.write('###############################\n')
FILE.write('METAD ...\n')
FILE.write(' LABEL=meta ARG=pp.proj,pp.ext \n')
FILE.write(' SIGMA=0.025,0.03 HEIGHT=1.5 \n')
FILE.write(' PACE=%i FILE=HILLS \n'% deposition_pace)
FILE.write(' GRID_MIN=%.1f,%.1f GRID_MAX=%.1f,%.1f GRID_SPACING=0.005,0.06\n'% \
((l_proj - 0.5),0.0, # proj min, extent min
(u_proj + 0.5),(extent+extent_buffer+0.2))) # proj max, extent max
FILE.write(' BIASFACTOR=10.0 TEMP=298\n')
FILE.write('... METAD\n')
FILE.write('\n')
FILE.write('PRINT ARG=* STRIDE=%i FILE=COLVAR FMT=%%8.4f\n'% print_pace)
def write_opes_plumed_file(p0, p1, protein_IDs, lig_IDs, extent = 0.60, extent_buffer = 0.15,
l_proj = 0.5, u_proj = 4.0, beta_cent = 1.5,
s_cent = 2, deposition_pace = 1000, barrier = 60,
print_pace = 1000, write_ProjectionOnAxis = False):
"""
Writes a standard wt fun-OPES plumed.dat file
p0, p1 - numpy array, atom IDs that will act as anchor points for the funnel
protein_IDs - numpy array, atom IDs (inclusive) belonging to the protein / host molecule
lig_IDs - numpy array, atom IDs (inclusive) belonging to the ligand / guest molecule
Length units are in nm.
"""
version = 1.0
p0_str = ''
for i in p0:
p0_str += str(i) + ','
p0_str = p0_str[:-1]
p1_str = ''
for i in p1:
p1_str += str(i) + ','
p1_str = p1_str[:-1]
protein_str = '%i-%i'% (protein_IDs[0], protein_IDs[-1])
lig_str = '%i-%i'% (lig_IDs[0], lig_IDs[-1])
with open('plumed.dat', 'w') as FILE:
FILE.write('####################################\n')
FILE.write('#plumed.dat for Funnel OPES#\n')
FILE.write('# Written on %s\n'% datetime.datetime.now())
FILE.write('# By funnel_maker %s\n'% str(version))
FILE.write('####################################\n')
FILE.write('RESTART\n')
FILE.write('\n')
FILE.write('###############################################\n')
FILE.write('###DEFINE RADIUS + CALC PROT-LIG VECTOR COMP###\n')
FILE.write('###############################################\n')
if write_ProjectionOnAxis is True:
FILE.write('LOAD FILE=ProjectionOnAxis.cpp\n')
FILE.write('LOAD FILE=OPESwt.cpp\n')
FILE.write('\n')
FILE.write('WHOLEMOLECULES STRIDE=1 ENTITY0=%s ENTITY1=%s\n'% (protein_str, lig_str))
FILE.write('\n')
FILE.write('########################\n')
FILE.write('###DEFINITION_OF_COMs###\n')
FILE.write('########################\n')
FILE.write('lig: COM ATOMS=%s\n'% lig_str)
FILE.write('p0: COM ATOMS=%s\n'% p0_str)
FILE.write('p1: COM ATOMS=%s\n'% p1_str)
FILE.write('\n')
FILE.write('\n')
FILE.write('########################\n')
FILE.write('###DEFINITION_OF_ARGs###\n')
FILE.write('########################\n')
FILE.write('# CV1: pp.proj = projection on the axis. The distance from the axis to the origin (along the axis)\n')
FILE.write('# CV2: pp.ext = orthogonal distance between the ATOM(=lig) to the axis.\n')
FILE.write('\n')
FILE.write('############\n')
FILE.write('###PoA_CV ##\n')
FILE.write('############\n')
FILE.write('pp: PROJECTION_ON_AXIS AXIS_ATOMS=p0,p1 ATOM=lig\n')
FILE.write('\n')
FILE.write('#######################\n')
FILE.write('###FUNNEL_PARAMETERS###\n')
FILE.write('#######################\n')
FILE.write('s_cent: CONSTANT VALUES=%.1f # INFLEXION\n'% s_cent)
FILE.write('beta_cent: CONSTANT VALUES=%.1f # STEEPNESS\n'% beta_cent)
FILE.write('wall_width: CONSTANT VALUES=%.2f # WIDTH (h)\n'% extent)
FILE.write('wall_buffer: CONSTANT VALUES=%.2f # BUFFER (f, total width = WIDTH + BUFFER)\n'% extent_buffer)
FILE.write('lwall: LOWER_WALLS ARG=pp.proj AT=%.1f KAPPA=20000.0 EXP=2 EPS=1 # Lower Wall (the starting point of the funnel)\n'% l_proj)
FILE.write('uwall: UPPER_WALLS ARG=pp.proj AT=%.1f KAPPA=20000.0 EXP=2 EPS=1 # Upper Wall (the ending point of the funnel)\n'% u_proj)
FILE.write('\n')
FILE.write('##################################\n')
FILE.write('###########CALCULATE FUNNEL#######\n')
FILE.write('# Returns the radius of the funnel\n')
FILE.write('# at the current value of the cv\n')
FILE.write('##################################\n')
FILE.write('MATHEVAL ...\n')
FILE.write(' LABEL=wall_center\n')
FILE.write(' ARG=pp.proj,s_cent,beta_cent,wall_width,wall_buffer\n')
FILE.write(' VAR=s,sc,b,h,f\n')
FILE.write(' FUNC=h*(1./(1.+exp(b*(s-sc))))+f\n')
FILE.write(' PERIODIC=NO\n')
FILE.write('... MATHEVAL\n')
FILE.write('\n')
FILE.write('\n')
FILE.write('##############################\n')
FILE.write('#####POTENTIAL_PARAMETERS#####\n')
FILE.write('##############################\n')
FILE.write('scaling: CONSTANT VALUES=1.0\n')
FILE.write('spring: CONSTANT VALUES=1000.0\n')
FILE.write('\n')
FILE.write('##############################\n')
FILE.write('#######DEFINE_POTENTIAL#######\n')
FILE.write('##############################\n')
FILE.write('MATHEVAL ...\n')
FILE.write(' LABEL=wall_bias\n')
FILE.write(' ARG=pp.ext,spring,wall_center,scaling\n')
FILE.write(' VAR=z,k,zc,sf\n')
FILE.write(' FUNC=step(z-zc)*k*(z-zc)*(z-zc)/(sf*sf)\n')
FILE.write(' PERIODIC=NO\n')
FILE.write('... MATHEVAL\n')
FILE.write('\n')
FILE.write('finalbias: BIASVALUE ARG=wall_bias\n')
FILE.write('\n')
FILE.write('\n')
FILE.write('###############################\n')
FILE.write('########DEFINE_OPES_WT#########\n')
FILE.write('###############################\n')
FILE.write('OPES_WT ...\n')
FILE.write(' LABEL=opes\n')
FILE.write(' FILE=Kernels.data\n')
FILE.write(' TEMP=298\n')
FILE.write(' ARG=pp.proj,pp.ext\n')
FILE.write(' PACE=%s'% deposition_pace)
FILE.write(' BARRIER=%i\n'% barrier)
FILE.write(' PROB_WFILE=Prob.data\n')
FILE.write(' PROB_WSTRIDE=50000\n')
FILE.write('... OPES_WT\n')
FILE.write('\n')
FILE.write('PRINT ARG=* STRIDE=%i FILE=COLVAR FMT=%%8.4f\n'% print_pace)
def get_funnel_definitions_from_plumed(plumed_file):
"""
Reads a 'plumed.dat' file and extracts the funnel definitions
Returns:
p0 - numpy array, atom IDs
p1 - numpy array, atoms IDs
s_cent - float
beta_cent - float
wall_width - float
wall_buffer - float
lwall - float
uwall - float
"""
plumed_file_lst = [line[:-1] for line in open(plumed_file,'r').readlines()]
# s_cent: CONSTANT VALUES=2.1 # INFLEXION
# beta_cent: CONSTANT VALUES=1.5 # STEEPNESS
# wall_width: CONSTANT VALUES=1.55 # WIDTH (h)
# wall_buffer: CONSTANT VALUES=0.15 # BUFFER (f, total width = WIDTH + BUFFER)
# lwall: LOWER_WALLS ARG=pp.proj AT=0.5 KAPPA=20000.0 EXP=2 EPS=1 # Lower Wall (the starting point of the funnel)
# uwall: UPPER_WALLS ARG=pp.proj AT=3.0 KAPPA=20000.0 EXP=2 EPS=1 # Upper Wall (the ending point of the funnel)
p0 = []
p1 = []
for line in plumed_file_lst:
if 'p0:' in line:
p0_str = line.split('=')[1]
p0_list = p0_str.split(',')
for i in p0_list:
p0.append(int(i))
p0 = np.array(p0)
elif 'p1:' in line:
p1_str = line.split('=')[1]
p1_list = p1_str.split(',')
for i in p1_list:
p1.append(int(i))
p1 = np.array(p1)
elif 's_cent:' in line:
s_cent = float(line.split('=')[1][:4])
elif 'beta_cent:' in line:
beta_cent = float(line.split('=')[1][:4])
elif 'wall_width:' in line:
wall_width = float(line.split('=')[1][:4])
elif 'wall_buffer:' in line:
wall_buffer = float(line.split('=')[1][:4])
elif 'lwall:' in line:
lwall = float(line.split('=')[2][:3])
elif 'uwall:' in line:
uwall = float(line.split('=')[2][:3])
return p0, p1, s_cent, beta_cent, wall_width, wall_buffer, lwall, uwall
def write_ProjectionOnAxis_script():
with open('ProjectionOnAxis.cpp','w') as SCRIPT:
SCRIPT.write("/* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n")
SCRIPT.write(" Copyright (c) 2011-2018 The plumed team\n")
SCRIPT.write(" (see the PEOPLE file at the root of the distribution for a list of names)\n")
SCRIPT.write("\n")
SCRIPT.write(" See http://www.plumed.org for more information.\n")
SCRIPT.write("\n")
SCRIPT.write(" This file is part of plumed, version 2.\n")
SCRIPT.write("\n")
SCRIPT.write(" plumed is free software: you can redistribute it and/or modify\n")
SCRIPT.write(" it under the terms of the GNU Lesser General Public License as published by\n")
SCRIPT.write(" the Free Software Foundation, either version 3 of the License, or\n")
SCRIPT.write(" (at your option) any later version.\n")
SCRIPT.write("\n")
SCRIPT.write(" plumed is distributed in the hope that it will be useful,\n")
SCRIPT.write(" but WITHOUT ANY WARRANTY; without even the implied warranty of\n")
SCRIPT.write(" MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n")
SCRIPT.write(" GNU Lesser General Public License for more details.\n")
SCRIPT.write("\n")
SCRIPT.write(" You should have received a copy of the GNU Lesser General Public License\n")
SCRIPT.write(" along with plumed. If not, see <http://www.gnu.org/licenses/>.\n")
SCRIPT.write("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */\n")
SCRIPT.write('#include "colvar/Colvar.h"\n')
SCRIPT.write('#include "core/ActionRegister.h"\n')
SCRIPT.write('#include "tools/Angle.h"\n')
SCRIPT.write("\n")
SCRIPT.write("#include <string>\n")
SCRIPT.write("#include <cmath>\n")
SCRIPT.write("\n")
SCRIPT.write("using namespace std;\n")
SCRIPT.write("\n")
SCRIPT.write("namespace PLMD {\n")
SCRIPT.write("namespace colvar {\n")
SCRIPT.write("\n")
SCRIPT.write("//+PLUMEDOC COLVAR PROJECTION_ON_AXIS\n")
SCRIPT.write("/*\n")
SCRIPT.write("Calculate the projection on an axis.\n")
SCRIPT.write("\n")
SCRIPT.write("\par Examples\n")
SCRIPT.write("\n")
SCRIPT.write("*/\n")
SCRIPT.write("//+ENDPLUMEDOC\n")
SCRIPT.write("\n")
SCRIPT.write("class ProjectionOnAxis : public Colvar {\n")
SCRIPT.write(" bool pbc;\n")
SCRIPT.write("\n")
SCRIPT.write("public:\n")
SCRIPT.write(" explicit ProjectionOnAxis(const ActionOptions&);\n")
SCRIPT.write("// active methods:\n")
SCRIPT.write(" virtual void calculate();\n")
SCRIPT.write(" static void registerKeywords( Keywords& keys );\n")
SCRIPT.write("};\n")
SCRIPT.write("\n")
SCRIPT.write('PLUMED_REGISTER_ACTION(ProjectionOnAxis,"PROJECTION_ON_AXIS")\n')
SCRIPT.write("\n")
SCRIPT.write("void ProjectionOnAxis::registerKeywords( Keywords& keys ) {\n")
SCRIPT.write(" Colvar::registerKeywords(keys);\n")
SCRIPT.write(' keys.add("atoms","AXIS_ATOMS","the atoms that define the direction of the axis of interest");\n')
SCRIPT.write(' keys.add("atoms","ATOM","the atom whose position we want to project on the axis of interest");\n')
SCRIPT.write("}\n")
SCRIPT.write("\n")
SCRIPT.write("ProjectionOnAxis::ProjectionOnAxis(const ActionOptions&ao):\n")
SCRIPT.write(" PLUMED_COLVAR_INIT(ao),\n")
SCRIPT.write(" pbc(true)\n")
SCRIPT.write("{\n")
SCRIPT.write(" vector<AtomNumber> axis_atoms;\n")
SCRIPT.write(' parseAtomList("AXIS_ATOMS",axis_atoms);\n')
SCRIPT.write(' if( axis_atoms.size()!=2 ) error("should only be two atoms specified to AXIS_ATOMS keyword");\n')
SCRIPT.write(" vector<AtomNumber> atom; \n")
SCRIPT.write(' parseAtomList("ATOM",atom);\n')
SCRIPT.write(' if( atom.size()!=1 ) error("should only be one atom specified to ATOM keyword");\n')
SCRIPT.write(' log.printf(" calculating projection of vector connecting atom %d and atom %d on vector connecting atom %d and atom %d \\n",\n')
SCRIPT.write(" axis_atoms[0].serial(), atom[0].serial(), axis_atoms[0].serial(), axis_atoms[1].serial() ); \n")
SCRIPT.write(" bool nopbc=!pbc;\n")
SCRIPT.write(' parseFlag("NOPBC",nopbc);\n')
SCRIPT.write(" pbc=!nopbc;\n")
SCRIPT.write("\n")
SCRIPT.write(' if(pbc) log.printf(" using periodic boundary conditions\\n");\n')
SCRIPT.write(' else log.printf(" not using periodic boundary conditions\\n");\n')
SCRIPT.write("\n")
SCRIPT.write(" // Add values to store data\n")
SCRIPT.write(' addComponentWithDerivatives("proj"); componentIsNotPeriodic("proj"); \n')
SCRIPT.write(' addComponentWithDerivatives("ext"); componentIsNotPeriodic("ext");\n')
SCRIPT.write(" // Get all the atom positions \n")
SCRIPT.write(" axis_atoms.push_back( atom[0] ); \n")
SCRIPT.write(" requestAtoms(axis_atoms);\n")
SCRIPT.write(" checkRead();\n")
SCRIPT.write("}\n")
SCRIPT.write("// calculator\n")
SCRIPT.write("void ProjectionOnAxis::calculate() {\n")
SCRIPT.write("\n")
SCRIPT.write(" Vector rik, rjk;\n")
SCRIPT.write(" if( pbc ) {\n")
SCRIPT.write(" rik = pbcDistance( getPosition(2), getPosition(0) );\n")
SCRIPT.write(" rjk = pbcDistance( getPosition(2), getPosition(1) );\n")
SCRIPT.write(" } else {\n")
SCRIPT.write(" rik = delta( getPosition(2), getPosition(0) );\n")
SCRIPT.write(" rjk = delta( getPosition(2), getPosition(1) );\n")
SCRIPT.write(" }\n")
SCRIPT.write(" Vector rij = delta( rik, rjk ); double dij = rij.modulo(); \n")
SCRIPT.write(" Vector nij = (1.0/dij)*rij; Tensor dij_a1;\n")
SCRIPT.write(" // Derivative of director connecting atom1 - atom2 wrt the position of atom 1\n")
SCRIPT.write(" dij_a1(0,0) = ( -(nij[1]*nij[1]+nij[2]*nij[2])/dij ); // dx/dx\n")
SCRIPT.write(" dij_a1(0,1) = ( nij[0]*nij[1]/dij ); // dx/dy\n")
SCRIPT.write(" dij_a1(0,2) = ( nij[0]*nij[2]/dij ); // dx/dz\n")
SCRIPT.write(" dij_a1(1,0) = ( nij[1]*nij[0]/dij ); // dy/dx\n")
SCRIPT.write(" dij_a1(1,1) = ( -(nij[0]*nij[0]+nij[2]*nij[2])/dij ); // dy/dy\n")
SCRIPT.write(" dij_a1(1,2) = ( nij[1]*nij[2]/dij );\n")
SCRIPT.write(" dij_a1(2,0) = ( nij[2]*nij[0]/dij );\n")
SCRIPT.write(" dij_a1(2,1) = ( nij[2]*nij[1]/dij );\n")
SCRIPT.write(" dij_a1(2,2) = ( -(nij[1]*nij[1]+nij[0]*nij[0])/dij );\n")
SCRIPT.write("\n")
SCRIPT.write(" // Calculate dot product and derivatives\n")
SCRIPT.write(" double d = dotProduct( -rik, nij );\n")
SCRIPT.write(" Vector dd1 = matmul(-rik, dij_a1) - nij;\n")
SCRIPT.write(" Vector dd2 = matmul(rik, dij_a1);\n")
SCRIPT.write(" Vector dd3 = nij;\n")
SCRIPT.write(' Value* pval=getPntrToComponent("proj"); pval->set( d );\n')
SCRIPT.write(" setAtomsDerivatives( pval, 0, dd1 );\n")
SCRIPT.write(" setAtomsDerivatives( pval, 1, dd2 );\n")
SCRIPT.write(" setAtomsDerivatives( pval, 2, dd3 );\n")
SCRIPT.write(" setBoxDerivatives( pval, -Tensor( rik, dd1 ) - Tensor( rjk, dd2 ) );\n")
SCRIPT.write(" // Calculate derivatives of perpendicular distance from axis\n")
SCRIPT.write(" double c = sqrt( rik.modulo2() - d*d ); double invc = (1.0/c);\n")
SCRIPT.write(" // Calculate derivatives of the other thing\n")
SCRIPT.write(" Vector der1 = invc*(rik - d*dd1);\n")
SCRIPT.write(" Vector der2 = invc*(-d*dd2);\n")
SCRIPT.write(" Vector der3 = invc*(-rik - d*dd3);\n")
SCRIPT.write("\n")
SCRIPT.write(' Value* cval=getPntrToComponent("ext"); cval->set( c ); \n')
SCRIPT.write(" setAtomsDerivatives( cval, 0, der1 );\n")
SCRIPT.write(" setAtomsDerivatives( cval, 1, der2 );\n")
SCRIPT.write(" setAtomsDerivatives( cval, 2, der3 );\n")
SCRIPT.write(" setBoxDerivatives( cval, -Tensor( rik, der1 ) - Tensor( rjk, der2 ) );\n")
SCRIPT.write("}\n")
SCRIPT.write("\n")
SCRIPT.write("}\n")
SCRIPT.write("}\n")
def write_run_py(structure_file,topology_file,run_time,lig_ids,p0_ids,p1_ids,lower_wall,upper_wall,wall_buffer,wall_width,s_cent,beta_cent):
with open('run.py','w') as FILE:
FILE.write('from simtk.openmm import *\n')
FILE.write('from simtk.openmm.app import *\n')
FILE.write('from simtk.unit import *\n')
FILE.write('from simtk.openmm.app.metadynamics import *\n')
FILE.write('from parmed import load_file\n')
FILE.write('from sys import stdout\n')
FILE.write('import os\n')
FILE.write('import subprocess as sp\n')
FILE.write('import shutil\n')
FILE.write('\n')
FILE.write('import numpy as np\n')
FILE.write("import MDAnalysis as mda\n")
FILE.write('\n')
FILE.write('# if you want to assign which GPU to use,\n')
FILE.write('# uncomment the line below\n')
FILE.write("#os.environ['CUDA_VISIBLE_DEVICES'] = '0'\n")
FILE.write('\n')
FILE.write("\n")
FILE.write('"""\n')
FILE.write('OpenMM-native implementation of funnel-metadynamics\n')
FILE.write('Steps:\n')
FILE.write(' 1. 10k enmin steps\n')
FILE.write(' 2. 5ns solute-restrained NPT equilibration, with MC bstat\n')
FILE.write(' 3. 5ns Calpha+ligand-restrained NVT equilibration\n')
FILE.write(f' 4. {run_time}ns well-tempered funnel-metadynamics\n')
FILE.write('\n')
FILE.write('Outputs:\n')
FILE.write(' 1. COLVAR, logging CVs every 2 ps\n')
FILE.write(' 2. bias files, written every 1 ns\n')
FILE.write(' 3. trajectory, written every 100 ps\n')
FILE.write(' 4. checkpoint, every 100 ps\n')
FILE.write('"""\n')
FILE.write("\n")
FILE.write("def get_CA_indices(coords, parm):\n")
FILE.write("\n")
FILE.write(" if coords.endswith('.gro'):\n")
FILE.write(" u = mda.Universe(coords)\n")
FILE.write(" elif coords.endswith('.rst') or coords.endswith('.rst7') or coords.endswith('.inpcrd'):\n")
FILE.write("\n")
FILE.write(" u = mda.Universe(parm, coords, format='INPCRD')\n")
FILE.write("\n")
FILE.write(" ca_atoms = u.select_atoms('name CA')\n")
FILE.write("\n")
FILE.write(" ca_list = [int(ca) for ca in ca_atoms.indices]\n")
FILE.write("\n")
FILE.write(" return ca_list\n")
FILE.write("\n")
FILE.write("def get_ligand_indices(coords, parm, lig_name = 'MOL', include_h = True):\n")
FILE.write("\n")
FILE.write(" if coords.endswith('.gro'):\n")
FILE.write(" u = mda.Universe(coords)\n")
FILE.write(" elif coords.endswith('.rst') or coords.endswith('.rst7') or coords.endswith('.inpcrd'):\n")
FILE.write("\n")
FILE.write(" u = mda.Universe(parm, coords, format='INPCRD')\n")
FILE.write("\n")
FILE.write(" if include_h is False:\n")
FILE.write(" lig_atoms = u.select_atoms('resname %s and not (name h* or name H*)'% lig_name)\n")
FILE.write(" else:\n")
FILE.write(" lig_atoms = u.select_atoms('resname %s'% lig_name)\n")
FILE.write("\n")
FILE.write(" lig_list = [int(a) for a in lig_atoms.indices]\n")
FILE.write("\n")
FILE.write(" return lig_list\n")
FILE.write("\n")
FILE.write("def get_protein_indices(coords, parm, include_h = True):\n")
FILE.write("\n")
FILE.write(" if coords.endswith('.gro'):\n")
FILE.write(" u = mda.Universe(coords)\n")
FILE.write(" elif coords.endswith('.rst') or coords.endswith('.rst7') or coords.endswith('.inpcrd'):\n")
FILE.write("\n")
FILE.write(" u = mda.Universe(parm, coords, format='INPCRD')\n")
FILE.write("\n")
FILE.write(" if include_h is False:\n")
FILE.write(" prot_atoms = u.select_atoms('protein and not name H*')\n")
FILE.write(" else:\n")
FILE.write(" prot_atoms = u.select_atoms('protein')\n")
FILE.write("\n")
FILE.write(" prot_list = [int(a) for a in prot_atoms.indices]\n")
FILE.write("\n")
FILE.write(" return prot_list\n")
FILE.write("\n")
FILE.write("def run_10k_enmin(params, input_positions):\n")
FILE.write("\n")
FILE.write(" # prepare system\n")
FILE.write(" system = params.createSystem(nonbondedMethod=PME,\n")
FILE.write(" nonbondedCutoff=1.0*nanometers,\n")
FILE.write(" constraints=HBonds,\n")
FILE.write(" rigidWater=True,\n")
FILE.write(" ewaldErrorTolerance=0.0005)\n")
FILE.write("\n")
FILE.write(" integrator = LangevinIntegrator(300*kelvin, 1.0/picoseconds,\n")
FILE.write(" 2.0*femtoseconds)\n")
FILE.write(" integrator.setConstraintTolerance(0.00001)\n")
FILE.write("\n")
FILE.write(" # prepare simulation\n")
FILE.write(" platform = Platform.getPlatformByName('CUDA')\n")
FILE.write(" properties = {'CudaPrecision':'mixed'}\n")
FILE.write(" simulation = Simulation(params.topology, system,\n")
FILE.write(" integrator, platform, properties)\n")
FILE.write("\n")
FILE.write(" simulation.context.setPositions(input_positions)\n")
FILE.write("\n")
FILE.write(" ### 10k min, with 10kJ target ###\n")
FILE.write(" simulation.minimizeEnergy(maxIterations=10000, tolerance=10*kilojoule/mole)\n")
FILE.write("\n")
FILE.write(" p = simulation.context.getState(getPositions=True).getPositions()\n")
FILE.write("\n")
FILE.write(" return p\n")
FILE.write("\n")
FILE.write("def run_5ns_NPT_restaint_equil(params, input_positions):\n")
FILE.write("\n")
FILE.write(" ### 5ns in NPT (MonteCarlo bstat) with 5kcal all heavy solute atom restraints ###\n")
FILE.write(" # prepare system\n")
FILE.write(" system = params.createSystem(nonbondedMethod=PME,\n")
FILE.write(" nonbondedCutoff=1.0*nanometers,\n")
FILE.write(" constraints=HBonds,\n")
FILE.write(" rigidWater=True,\n")
FILE.write(" ewaldErrorTolerance=0.0005)\n")
FILE.write("\n")
FILE.write(" restraint = HarmonicBondForce()\n")
FILE.write(" restraint.setUsesPeriodicBoundaryConditions(True)\n")
FILE.write("\n")
FILE.write(" system.addForce(restraint)\n")
FILE.write(" nonbonded = [f for f in system.getForces() if isinstance(f, NonbondedForce)][0]\n")
FILE.write(" atomsToRestrain = get_protein_indices(coords_file, parm_file, include_h = False) + get_ligand_indices(coords_file, parm_file, include_h = False)\n")
FILE.write("\n")
FILE.write(" dummyIndex = []\n")
FILE.write(" positions = input_positions\n")
FILE.write(" for i in atomsToRestrain:\n")
FILE.write(" j = system.addParticle(0)\n")
FILE.write(" nonbonded.addParticle(0, 1, 0)\n")
FILE.write(" nonbonded.addException(i, j, 0, 1, 0)\n")
FILE.write(" restraint.addBond(i, j, 0*nanometers, 5*kilocalories_per_mole/angstrom**2)\n")
FILE.write(" dummyIndex.append(j)\n")
FILE.write(" input_positions.append(positions[i])\n")
FILE.write(" integrator = LangevinIntegrator(300*kelvin, 1.0/picoseconds,\n")
FILE.write(" 2.0*femtoseconds)\n")
FILE.write(" system.addForce(MonteCarloBarostat(1*bar, 300*kelvin))\n")
FILE.write(" context = Context(system, integrator)\n")
FILE.write("\n")
FILE.write(" context.setPositions(input_positions)\n")
FILE.write("\n")
FILE.write(" run_time = 5.0 # ns\n")
FILE.write("\n")
FILE.write(" print('Initial energy:', context.getState(getEnergy=True).getPotentialEnergy())\n")
FILE.write(" integrator.step(int(run_time * 500000))\n")
FILE.write(" print('Final energy:', context.getState(getEnergy=True).getPotentialEnergy())\n")
FILE.write("\n")
FILE.write(" p = context.getState(getPositions=True).getPositions()[:dummyIndex[0]]\n")
FILE.write("\n")
FILE.write(" return p\n")
FILE.write("\n")
FILE.write("def run_5ns_NVT_restaint_equil(params, input_positions):\n")
FILE.write("\n")
FILE.write(" ### 5ns in NVT with 5kcal for Ca and ligand heavy atoms ###\n")
FILE.write("\n")
FILE.write(" # prepare system\n")
FILE.write(" system = params.createSystem(nonbondedMethod=PME,\n")
FILE.write(" nonbondedCutoff=1.0*nanometers,\n")
FILE.write(" constraints=HBonds,\n")
FILE.write(" rigidWater=True,\n")
FILE.write(" ewaldErrorTolerance=0.0005)\n")
FILE.write("\n")
FILE.write(" restraint = HarmonicBondForce()\n")
FILE.write(" restraint.setUsesPeriodicBoundaryConditions(True)\n")
FILE.write("\n")
FILE.write(" system.addForce(restraint)\n")
FILE.write(" nonbonded = [f for f in system.getForces() if isinstance(f, NonbondedForce)][0]\n")
FILE.write(" atomsToRestrain = get_CA_indices(coords_file, parm_file) + get_ligand_indices(coords_file, parm_file, include_h = False)\n")
FILE.write("\n")
FILE.write(" dummyIndex = []\n")
FILE.write(" positions = input_positions\n")
FILE.write(" for i in atomsToRestrain:\n")
FILE.write(" j = system.addParticle(0)\n")
FILE.write(" nonbonded.addParticle(0, 1, 0)\n")
FILE.write(" nonbonded.addException(i, j, 0, 1, 0)\n")
FILE.write(" restraint.addBond(i, j, 0*nanometers, 5*kilocalories_per_mole/angstrom**2)\n")
FILE.write(" dummyIndex.append(j)\n")
FILE.write(" input_positions.append(positions[i])\n")
FILE.write("\n")
FILE.write(" integrator = LangevinIntegrator(300*kelvin, 1.0/picoseconds,\n")
FILE.write(" 2.0*femtoseconds)\n")
FILE.write(" context = Context(system, integrator)\n")
FILE.write("\n")
FILE.write(" context.setPositions(input_positions)\n")
FILE.write("\n")
FILE.write(" run_time = 5.0 # ns\n")
FILE.write("\n")
FILE.write(" print('Initial energy:', context.getState(getEnergy=True).getPotentialEnergy())\n")
FILE.write(" integrator.step(int(run_time * 500000))\n")
FILE.write(" print('Final energy:', context.getState(getEnergy=True).getPotentialEnergy())\n")
FILE.write("\n")
FILE.write(" p = context.getState(getPositions=True).getPositions()[:dummyIndex[0]]\n")
FILE.write("\n")
FILE.write(" PDBFile.writeFile(params.topology, p, open('equilibrated.pdb', 'w'))\n")
FILE.write("\n")
FILE.write(" return p\n")
FILE.write("\n")
FILE.write('"""The actual start of the script"""\n')
FILE.write("\n")
FILE.write(f"coords_file = '{structure_file}'\n")
FILE.write(f"parm_file = '{topology_file}'\n")
FILE.write('\n')
#FILE.write("coords = AmberInpcrdFile(coords_file)\n")
FILE.write("coords = load_file(coords_file)\n")
#FILE.write("parm = AmberPrmtopFile(parm_file)\n")
FILE.write("parm = load_file(parm_file)\n")
FILE.write('\n')
FILE.write('\n')
FILE.write("# run the minimisation and equilibration sims\n")
FILE.write("if not os.path.isfile('equilibrated.pdb'):\n")
FILE.write(" print('Starting energy minimization')\n")
FILE.write(" min_pos = run_10k_enmin(parm, coords.positions)\n")
FILE.write(" print('Done')\n")
FILE.write(" print('Starting restrained NPT equilibration')\n")
FILE.write(" npt_pos = run_5ns_NPT_restaint_equil(parm, min_pos)\n")
FILE.write(" print('Done')\n")
FILE.write(" print('Starting restrained NVT equilibration')\n")
FILE.write(" input_pos = run_5ns_NVT_restaint_equil(parm, npt_pos)\n")
FILE.write(" print('Done')\n")
FILE.write("else:\n")
FILE.write(" input_pos = PDBFile('equilibrated.pdb').getPositions()\n")
FILE.write("\n")
FILE.write("print('Starting production metadynamics simulation')\n")
FILE.write("# and now the metadynamics production run\n")
FILE.write("# prepare system and integrator\n")
FILE.write("system = parm.createSystem(nonbondedMethod=PME,\n")
FILE.write(" nonbondedCutoff=1.0*nanometers,\n")
FILE.write(" constraints=HBonds,\n")
FILE.write(" rigidWater=True,\n")
FILE.write(" ewaldErrorTolerance=0.0005)\n")
FILE.write("\n")
FILE.write('\n')
FILE.write('\n')
FILE.write(f'lig = [ i for i in range({lig_ids[0]-1}, {lig_ids[-1]})]\n')
FILE.write(f'p0 = {[ i-1 for i in p0_ids]}\n')
FILE.write(f'p1 = {[ i-1 for i in p1_ids]}\n')
FILE.write('\n')
FILE.write("projection = CustomCentroidBondForce(3, 'distance(g1,g2)*cos(angle(g1,g2,g3))')\n")
FILE.write('projection.addGroup(lig)\n')