-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathinference.py
209 lines (187 loc) · 8.4 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import json
from basemodel import TextDetBase, TextDetBaseDNN
import os.path as osp
from tqdm import tqdm
import numpy as np
import cv2
import torch
from pathlib import Path
import torch
from utils.yolov5_utils import non_max_suppression
from utils.db_utils import SegDetectorRepresenter
from utils.io_utils import imread, imwrite, find_all_imgs, NumpyEncoder
from utils.imgproc_utils import letterbox, xyxy2yolo, get_yololabel_strings
from utils.textblock import TextBlock, group_output, visualize_textblocks
from utils.textmask import refine_mask, refine_undetected_mask, REFINEMASK_INPAINT, REFINEMASK_ANNOTATION
from pathlib import Path
from typing import Union
def model2annotations(model_path, img_dir_list, save_dir, save_json=False):
if isinstance(img_dir_list, str):
img_dir_list = [img_dir_list]
cuda = torch.cuda.is_available()
device = 'cuda' if cuda else 'cpu'
model = TextDetector(model_path=model_path, input_size=1024, device=device, act='leaky')
imglist = []
for img_dir in img_dir_list:
imglist += find_all_imgs(img_dir, abs_path=True)
for img_path in tqdm(imglist):
imgname = osp.basename(img_path)
img = imread(img_path)
im_h, im_w = img.shape[:2]
imname = imgname.replace(Path(imgname).suffix, '')
maskname = 'mask-'+imname+'.png'
poly_save_path = osp.join(save_dir, 'line-' + imname + '.txt')
mask, mask_refined, blk_list = model(img, refine_mode=REFINEMASK_ANNOTATION, keep_undetected_mask=True)
polys = []
blk_xyxy = []
blk_dict_list = []
for blk in blk_list:
polys += blk.lines
blk_xyxy.append(blk.xyxy)
blk_dict_list.append(blk.to_dict())
blk_xyxy = xyxy2yolo(blk_xyxy, im_w, im_h)
if blk_xyxy is not None:
cls_list = [1] * len(blk_xyxy)
yolo_label = get_yololabel_strings(cls_list, blk_xyxy)
else:
yolo_label = ''
with open(osp.join(save_dir, imname+'.txt'), 'w', encoding='utf8') as f:
f.write(yolo_label)
# num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(mask)
# _, mask = cv2.threshold(mask, 50, 255, cv2.THRESH_BINARY)
# draw_connected_labels(num_labels, labels, stats, centroids)
# visualize_textblocks(img, blk_list)
# cv2.imshow('rst', img)
# cv2.imshow('mask', mask)
# cv2.imshow('mask_refined', mask_refined)
# cv2.waitKey(0)
if len(polys) != 0:
if isinstance(polys, list):
polys = np.array(polys)
polys = polys.reshape(-1, 8)
np.savetxt(poly_save_path, polys, fmt='%d')
if save_json:
with open(osp.join(save_dir, imname+'.json'), 'w', encoding='utf8') as f:
f.write(json.dumps(blk_dict_list, ensure_ascii=False, cls=NumpyEncoder))
imwrite(osp.join(save_dir, imgname), img)
imwrite(osp.join(save_dir, maskname), mask_refined)
def preprocess_img(img, input_size=(1024, 1024), device='cpu', bgr2rgb=True, half=False, to_tensor=True):
if bgr2rgb:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_in, ratio, (dw, dh) = letterbox(img, new_shape=input_size, auto=False, stride=64)
if to_tensor:
img_in = img_in.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
img_in = np.array([np.ascontiguousarray(img_in)]).astype(np.float32) / 255
if to_tensor:
img_in = torch.from_numpy(img_in).to(device)
if half:
img_in = img_in.half()
return img_in, ratio, int(dw), int(dh)
def postprocess_mask(img: Union[torch.Tensor, np.ndarray], thresh=None):
# img = img.permute(1, 2, 0)
if isinstance(img, torch.Tensor):
img = img.squeeze_()
if img.device != 'cpu':
img = img.detach_().cpu()
img = img.numpy()
else:
img = img.squeeze()
if thresh is not None:
img = img > thresh
img = img * 255
# if isinstance(img, torch.Tensor):
return img.astype(np.uint8)
def postprocess_yolo(det, conf_thresh, nms_thresh, resize_ratio, sort_func=None):
det = non_max_suppression(det, conf_thresh, nms_thresh)[0]
# bbox = det[..., 0:4]
if det.device != 'cpu':
det = det.detach_().cpu().numpy()
det[..., [0, 2]] = det[..., [0, 2]] * resize_ratio[0]
det[..., [1, 3]] = det[..., [1, 3]] * resize_ratio[1]
if sort_func is not None:
det = sort_func(det)
blines = det[..., 0:4].astype(np.int32)
confs = np.round(det[..., 4], 3)
cls = det[..., 5].astype(np.int32)
return blines, cls, confs
class TextDetector:
lang_list = ['eng', 'ja', 'unknown']
langcls2idx = {'eng': 0, 'ja': 1, 'unknown': 2}
def __init__(self, model_path, input_size=1024, device='cpu', half=False, nms_thresh=0.35, conf_thresh=0.4, mask_thresh=0.3, act='leaky'):
super(TextDetector, self).__init__()
cuda = device == 'cuda'
if Path(model_path).suffix == '.onnx':
self.model = cv2.dnn.readNetFromONNX(model_path)
self.net = TextDetBaseDNN(input_size, model_path)
self.backend = 'opencv'
else:
self.net = TextDetBase(model_path, device=device, act=act)
self.backend = 'torch'
if isinstance(input_size, int):
input_size = (input_size, input_size)
self.input_size = input_size
self.device = device
self.half = half
self.conf_thresh = conf_thresh
self.nms_thresh = nms_thresh
self.seg_rep = SegDetectorRepresenter(thresh=0.3)
@torch.no_grad()
def __call__(self, img, refine_mode=REFINEMASK_INPAINT, keep_undetected_mask=False):
img_in, ratio, dw, dh = preprocess_img(img, input_size=self.input_size, device=self.device, half=self.half, to_tensor=self.backend=='torch')
im_h, im_w = img.shape[:2]
blks, mask, lines_map = self.net(img_in)
resize_ratio = (im_w / (self.input_size[0] - dw), im_h / (self.input_size[1] - dh))
blks = postprocess_yolo(blks, self.conf_thresh, self.nms_thresh, resize_ratio)
if self.backend == 'opencv':
if mask.shape[1] == 2: # some version of opencv spit out reversed result
tmp = mask
mask = lines_map
lines_map = tmp
mask = postprocess_mask(mask)
lines, scores = self.seg_rep(self.input_size, lines_map)
box_thresh = 0.6
idx = np.where(scores[0] > box_thresh)
lines, scores = lines[0][idx], scores[0][idx]
# map output to input img
mask = mask[: mask.shape[0]-dh, : mask.shape[1]-dw]
mask = cv2.resize(mask, (im_w, im_h), interpolation=cv2.INTER_LINEAR)
if lines.size == 0 :
lines = []
else :
lines = lines.astype(np.float64)
lines[..., 0] *= resize_ratio[0]
lines[..., 1] *= resize_ratio[1]
lines = lines.astype(np.int32)
blk_list = group_output(blks, lines, im_w, im_h, mask)
mask_refined = refine_mask(img, mask, blk_list, refine_mode=refine_mode)
if keep_undetected_mask:
mask_refined = refine_undetected_mask(img, mask, mask_refined, blk_list, refine_mode=refine_mode)
return mask, mask_refined, blk_list
def traverse_by_dict(img_dir_list, dict_dir):
if isinstance(img_dir_list, str):
img_dir_list = [img_dir_list]
imglist = []
for img_dir in img_dir_list:
imglist += find_all_imgs(img_dir, abs_path=True)
for img_path in tqdm(imglist):
imgname = osp.basename(img_path)
imname = imgname.replace(Path(imgname).suffix, '')
mask_path = osp.join(dict_dir, 'mask-'+imname+'.png')
with open(osp.join(dict_dir, imname+'.json'), 'r', encoding='utf8') as f:
blk_dict_list = json.loads(f.read())
blk_list = [TextBlock(**blk_dict) for blk_dict in blk_dict_list]
img = cv2.imread(img_path)
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
mask = refine_mask(img, mask, blk_list)
visualize_textblocks(img, blk_list)
cv2.imshow('im', img)
cv2.imshow('mask', mask)
cv2.waitKey(0)
if __name__ == '__main__':
device = 'cpu'
model_path = 'data/comictextdetector.pt'
model_path = 'data/comictextdetector.pt.onnx'
img_dir = r'data/examples'
save_dir = r'data/backup'
model2annotations(model_path, img_dir, save_dir, save_json=True)
traverse_by_dict(img_dir, save_dir)