-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_mwlspectramesh.py
127 lines (119 loc) · 4.82 KB
/
generate_mwlspectramesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "pandas",
# "numpy",
# "numba",
# "scipy",
# ]
# ///
import math
import os
import traceback
from utils import converter as cv, us_maths
import pandas as pd
import re
import sys
attributes = ['Name', 'MW', 's', 'D', 'ff0', 'vbar', 'c_p']
axis = ['mw', 's', 'D', 'f', 'f_f0', 'vbar20', 's20w', 'D20w']
colnames = ['analyte name', 'mw', 's', 'D', 'f', 'f_f0', 'vbar20', 'extinction', 'axial', 'sigma', 'delta',
'oligomer', 'shape', 'type', 'molar', 'signal']
aggregations = {col: 'mean' for col in
('mw', 'D', 'f', 'extinction', 'axial', 'sigma', 'delta', 'oligomer', 'shape', 'type', 'molar')}
aggregations['signal'] = 'sum'
dfs = []
def generate_mwl_mesh(dir_input, nsmooth, temp_exp, visc_exp, dens_exp):
dir = os.path.dirname(__file__)
dirname = os.path.join(dir, dir_input)
metadata = []
header = ''
max_var = 0
print(f'{len(os.listdir(dirname))} files found, start reading')
for filename in os.listdir(dirname):
if not filename.endswith('.xml'):
continue
# read first file header
if not header:
with open(os.path.join(dirname, filename)) as infile:
header = '\n'.join(infile.readlines()[:4])
# read model variance
try:
x = pd.read_xml(os.path.join(dirname, filename), xpath='//ModelData/model')
metadata.append(x)
except Exception as e:
traceback.print_exc()
raise e
# read analytes
try:
model_xml = pd.read_xml(os.path.join(dirname, filename), xpath='//ModelData/model/analyte')
model_xml['wavelength'] = x['wavelength']
dfs.append(model_xml)
except Exception as e:
traceback.print_exc()
raise e
metadata = pd.concat(metadata, axis=0)
max_var = metadata.variance.max()
# concatenate
df = pd.concat(dfs, axis=0)
model_merged = df.groupby(by=['s', 'f_f0', 'vbar20','wavelength'], sort=False).agg(aggregations).reset_index(drop=False)
model_merged = cv.denormalize(model_merged, dens_exp, visc_exp, temp_exp)
models_count = metadata.shape[0]
nlambda = model_merged['wavelength'].nunique()
wl_min = model_merged['wavelength'].min()
wl_max = model_merged['wavelength'].max()
axis_min = model_merged.min(axis=0)
axis_max = model_merged.max(axis=0)
for ax in axis:
nxvals = model_merged[ax].nunique()
temp_data = model_merged[['wavelength','signal',ax]].groupby(by=[ax,'wavelength'],sort=False).agg({
'signal':'mean'}).reset_index().sort_values([ax,'wavelength'])
zeros = []
for x in temp_data[ax]:
for y in temp_data['wavelength']:
zeros.append((x,y,0))
out_dfs = [pd.DataFrame(zeros,columns=[ax,'wavelength','signal'])]
for axvl in temp_data[ax]:
temp_vec = temp_data[temp_data[ax] == axvl]
temp_cvec = temp_vec.loc[:,['signal']].to_numpy()
temp_cvec = us_maths.gaussian_smoothing(temp_cvec,nsmooth)
temp_vec = temp_vec.to_numpy()
temp_data_out = [(x[0],x[1],y[0]) for x,y in zip(temp_vec,temp_cvec)]
out_dfs.append(pd.DataFrame(temp_data_out,columns=[ax,'wavelength','signal']))
out_data = pd.concat(out_dfs,axis=0)
out_data = out_data.groupby(by=[ax,'wavelength'],sort=False).agg({'signal':'sum'}).reset_index()
out_data.to_csv(dirname+'\\'+dir_input.split('\\')[-1] + f'-{ax}.csv')
print(f'{ax} done')
if __name__ == '__main__':
if len(sys.argv) != 6:
dir_input = input('Enter path to directory which should be used:')
try:
nsmooth = input('Enter the smoothing factor:')
nsmooth = int(nsmooth)
except Exception as e:
print('Invalid input as temperature')
raise e
try:
temp_exp = input('Enter the temperature of the experiment in Kelvin:')
temp_exp = float(temp_exp)
except Exception as e:
print('Invalid input as temperature')
raise e
try:
visc_exp = input('Enter the viscosity of the solvent used in the experiment in mPas:')
visc_exp = float(visc_exp)
except Exception as e:
print('Invalid input as viscosity')
raise e
try:
dens_exp = input('Enter the density of the solvent used in the experiment:')
dens_exp = float(dens_exp)
except Exception as e:
print('Invalid input as density')
raise e
else:
dir_input = sys.argv[1]
nsmooth = int(sys.argv[2])
temp_exp = float(sys.argv[3])
visc_exp = float(sys.argv[4])
dens_exp = float(sys.argv[5])
generate_mwl_mesh(dir_input, nsmooth, temp_exp, visc_exp, dens_exp)